From mboxrd@z Thu Jan 1 00:00:00 1970 Return-Path: Received: from ffbox0-bg.mplayerhq.hu (ffbox0-bg.ffmpeg.org [79.124.17.100]) by master.gitmailbox.com (Postfix) with ESMTP id 6BBFB40A7B for ; Sun, 1 Jan 2023 10:20:18 +0000 (UTC) Received: from [127.0.1.1] (localhost [127.0.0.1]) by ffbox0-bg.mplayerhq.hu (Postfix) with ESMTP id 2082A68BB0D; Sun, 1 Jan 2023 12:20:15 +0200 (EET) Received: from iq.passwd.hu (iq.passwd.hu [217.27.212.140]) by ffbox0-bg.mplayerhq.hu (Postfix) with ESMTP id 7349D68ADF2 for ; Sun, 1 Jan 2023 12:20:08 +0200 (EET) Received: from localhost (localhost [127.0.0.1]) by iq.passwd.hu (Postfix) with ESMTP id 571D8E844C for ; Sun, 1 Jan 2023 11:20:05 +0100 (CET) X-Virus-Scanned: amavisd-new at passwd.hu Received: from iq.passwd.hu ([127.0.0.1]) by localhost (iq.passwd.hu [127.0.0.1]) (amavisd-new, port 10024) with ESMTP id YmSAZcAhxWOt for ; Sun, 1 Jan 2023 11:20:02 +0100 (CET) Received: from iq (iq [217.27.212.140]) by iq.passwd.hu (Postfix) with ESMTPS id E8DDCE83F5 for ; Sun, 1 Jan 2023 11:20:01 +0100 (CET) Date: Sun, 1 Jan 2023 11:20:01 +0100 (CET) From: Marton Balint To: FFmpeg development discussions and patches In-Reply-To: <20221230084256.23865-2-ting.fu@intel.com> Message-ID: References: <20221230084256.23865-1-ting.fu@intel.com> <20221230084256.23865-2-ting.fu@intel.com> MIME-Version: 1.0 Subject: Re: [FFmpeg-devel] [PATCH 2/2] lavfi/dnn: Remove DNN native backend X-BeenThere: ffmpeg-devel@ffmpeg.org X-Mailman-Version: 2.1.29 Precedence: list List-Id: FFmpeg development discussions and patches List-Unsubscribe: , List-Archive: List-Post: List-Help: List-Subscribe: , Reply-To: FFmpeg development discussions and patches Content-Transfer-Encoding: 7bit Content-Type: text/plain; charset="us-ascii"; Format="flowed" Errors-To: ffmpeg-devel-bounces@ffmpeg.org Sender: "ffmpeg-devel" Archived-At: List-Archive: List-Post: On Fri, 30 Dec 2022, Ting Fu wrote: > According to discussion in > https://etherpad.mit.edu/p/FF_dev_meeting_20221202. > The DNN native backend should be removed at first step. > All the DNN native backend related code is deleted. You should explain why it is being removed. The cited URL is not giving any explanations. Thanks, Marton > > Signed-off-by: Ting Fu > --- > libavfilter/dnn/Makefile | 10 - > libavfilter/dnn/dnn_backend_native.c | 561 ------------------ > libavfilter/dnn/dnn_backend_native.h | 149 ----- > .../dnn/dnn_backend_native_layer_avgpool.c | 147 ----- > .../dnn/dnn_backend_native_layer_avgpool.h | 69 --- > .../dnn/dnn_backend_native_layer_conv2d.c | 265 --------- > .../dnn/dnn_backend_native_layer_conv2d.h | 68 --- > .../dnn/dnn_backend_native_layer_dense.c | 151 ----- > .../dnn/dnn_backend_native_layer_dense.h | 65 -- > .../dnn_backend_native_layer_depth2space.c | 102 ---- > .../dnn_backend_native_layer_depth2space.h | 72 --- > .../dnn/dnn_backend_native_layer_mathbinary.c | 193 ------ > .../dnn/dnn_backend_native_layer_mathbinary.h | 54 -- > .../dnn/dnn_backend_native_layer_mathunary.c | 156 ----- > .../dnn/dnn_backend_native_layer_mathunary.h | 92 --- > .../dnn/dnn_backend_native_layer_maximum.c | 83 --- > .../dnn/dnn_backend_native_layer_maximum.h | 44 -- > .../dnn/dnn_backend_native_layer_pad.c | 268 --------- > .../dnn/dnn_backend_native_layer_pad.h | 43 -- > libavfilter/dnn/dnn_backend_native_layers.c | 42 -- > libavfilter/dnn/dnn_backend_native_layers.h | 38 -- > libavfilter/dnn/dnn_backend_tf.c | 368 +----------- > libavfilter/dnn/dnn_interface.c | 10 +- > libavfilter/tests/dnn-layer-avgpool.c | 197 ------ > libavfilter/tests/dnn-layer-conv2d.c | 248 -------- > libavfilter/tests/dnn-layer-dense.c | 131 ---- > libavfilter/tests/dnn-layer-depth2space.c | 102 ---- > libavfilter/tests/dnn-layer-mathbinary.c | 214 ------- > libavfilter/tests/dnn-layer-mathunary.c | 148 ----- > libavfilter/tests/dnn-layer-maximum.c | 71 --- > libavfilter/tests/dnn-layer-pad.c | 239 -------- > tests/Makefile | 1 - > tests/fate/dnn.mak | 45 -- > 33 files changed, 6 insertions(+), 4440 deletions(-) > delete mode 100644 libavfilter/dnn/dnn_backend_native.c > delete mode 100644 libavfilter/dnn/dnn_backend_native.h > delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_avgpool.c > delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_avgpool.h > delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_conv2d.c > delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_conv2d.h > delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_dense.c > delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_dense.h > delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_depth2space.c > delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_depth2space.h > delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_mathbinary.c > delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_mathbinary.h > delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_mathunary.c > delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_mathunary.h > delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_maximum.c > delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_maximum.h > delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_pad.c > delete mode 100644 libavfilter/dnn/dnn_backend_native_layer_pad.h > delete mode 100644 libavfilter/dnn/dnn_backend_native_layers.c > delete mode 100644 libavfilter/dnn/dnn_backend_native_layers.h > delete mode 100644 libavfilter/tests/dnn-layer-avgpool.c > delete mode 100644 libavfilter/tests/dnn-layer-conv2d.c > delete mode 100644 libavfilter/tests/dnn-layer-dense.c > delete mode 100644 libavfilter/tests/dnn-layer-depth2space.c > delete mode 100644 libavfilter/tests/dnn-layer-mathbinary.c > delete mode 100644 libavfilter/tests/dnn-layer-mathunary.c > delete mode 100644 libavfilter/tests/dnn-layer-maximum.c > delete mode 100644 libavfilter/tests/dnn-layer-pad.c > delete mode 100644 tests/fate/dnn.mak > > diff --git a/libavfilter/dnn/Makefile b/libavfilter/dnn/Makefile > index 4cfbce0efc..5d5697ea42 100644 > --- a/libavfilter/dnn/Makefile > +++ b/libavfilter/dnn/Makefile > @@ -3,16 +3,6 @@ OBJS-$(CONFIG_DNN) += dnn/dnn_io_proc.o > OBJS-$(CONFIG_DNN) += dnn/queue.o > OBJS-$(CONFIG_DNN) += dnn/safe_queue.o > OBJS-$(CONFIG_DNN) += dnn/dnn_backend_common.o > -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native.o > -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layers.o > -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_avgpool.o > -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_dense.o > -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_pad.o > -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_conv2d.o > -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_depth2space.o > -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_maximum.o > -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_mathbinary.o > -OBJS-$(CONFIG_DNN) += dnn/dnn_backend_native_layer_mathunary.o > > DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o > DNN-OBJS-$(CONFIG_LIBOPENVINO) += dnn/dnn_backend_openvino.o > diff --git a/libavfilter/dnn/dnn_backend_native.c b/libavfilter/dnn/dnn_backend_native.c > deleted file mode 100644 > index b53799f04d..0000000000 > --- a/libavfilter/dnn/dnn_backend_native.c > +++ /dev/null > @@ -1,561 +0,0 @@ > -/* > - * Copyright (c) 2018 Sergey Lavrushkin > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -/** > - * @file > - * DNN native backend implementation. > - */ > - > -#include "dnn_backend_native.h" > -#include "libavutil/avassert.h" > -#include "dnn_backend_native_layer_conv2d.h" > -#include "dnn_backend_native_layers.h" > -#include "dnn_io_proc.h" > -#include "dnn_backend_common.h" > - > -#define OFFSET(x) offsetof(NativeContext, x) > -#define FLAGS AV_OPT_FLAG_FILTERING_PARAM > -static const AVOption dnn_native_options[] = { > - { "conv2d_threads", "threads num for conv2d layer", OFFSET(options.conv2d_threads), AV_OPT_TYPE_INT, { .i64 = 0 }, INT_MIN, INT_MAX, FLAGS }, > - { "async", "use DNN async inference", OFFSET(options.async), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS }, > - { NULL }, > -}; > - > -static const AVClass dnn_native_class = { > - .class_name = "dnn_native", > - .item_name = av_default_item_name, > - .option = dnn_native_options, > - .version = LIBAVUTIL_VERSION_INT, > - .category = AV_CLASS_CATEGORY_FILTER, > -}; > - > -static int execute_model_native(Queue *lltask_queue); > - > -static int extract_lltask_from_task(TaskItem *task, Queue *lltask_queue) > -{ > - NativeModel *native_model = task->model; > - NativeContext *ctx = &native_model->ctx; > - LastLevelTaskItem *lltask = av_malloc(sizeof(*lltask)); > - > - if (!lltask) { > - av_log(ctx, AV_LOG_ERROR, "Unable to allocate space for LastLevelTaskItem\n"); > - return AVERROR(ENOMEM); > - } > - task->inference_todo = 1; > - task->inference_done = 0; > - lltask->task = task; > - > - if (ff_queue_push_back(lltask_queue, lltask) < 0) { > - av_log(ctx, AV_LOG_ERROR, "Failed to push back lltask_queue.\n"); > - av_freep(&lltask); > - return AVERROR(ENOMEM); > - } > - return 0; > -} > - > -static int get_input_native(void *model, DNNData *input, const char *input_name) > -{ > - NativeModel *native_model = model; > - NativeContext *ctx = &native_model->ctx; > - > - for (int i = 0; i < native_model->operands_num; ++i) { > - DnnOperand *oprd = &native_model->operands[i]; > - if (strcmp(oprd->name, input_name) == 0) { > - if (oprd->type != DOT_INPUT) { > - av_log(ctx, AV_LOG_ERROR, "Found \"%s\" in model, but it is not input node\n", input_name); > - return AVERROR(EINVAL); > - } > - input->dt = oprd->data_type; > - av_assert0(oprd->dims[0] == 1); > - input->height = oprd->dims[1]; > - input->width = oprd->dims[2]; > - input->channels = oprd->dims[3]; > - return 0; > - } > - } > - > - // do not find the input operand > - av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", input_name); > - return AVERROR(EINVAL); > -} > - > -static int get_output_native(void *model, const char *input_name, int input_width, int input_height, > - const char *output_name, int *output_width, int *output_height) > -{ > - int ret = 0; > - NativeModel *native_model = model; > - NativeContext *ctx = &native_model->ctx; > - TaskItem task; > - DNNExecBaseParams exec_params = { > - .input_name = input_name, > - .output_names = &output_name, > - .nb_output = 1, > - .in_frame = NULL, > - .out_frame = NULL, > - }; > - > - ret = ff_dnn_fill_gettingoutput_task(&task, &exec_params, native_model, input_height, input_width, ctx); > - if (ret != 0) { > - goto err; > - } > - > - ret = extract_lltask_from_task(&task, native_model->lltask_queue); > - if (ret != 0) { > - av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n"); > - goto err; > - } > - > - ret = execute_model_native(native_model->lltask_queue); > - *output_width = task.out_frame->width; > - *output_height = task.out_frame->height; > - > -err: > - av_frame_free(&task.out_frame); > - av_frame_free(&task.in_frame); > - return ret; > -} > - > -// Loads model and its parameters that are stored in a binary file with following structure: > -// layers_num,layer_type,layer_parameterss,layer_type,layer_parameters... > -// For CONV layer: activation_function, input_num, output_num, kernel_size, kernel, biases > -// For DEPTH_TO_SPACE layer: block_size > -DNNModel *ff_dnn_load_model_native(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx) > -{ > -#define DNN_NATIVE_MAGIC "FFMPEGDNNNATIVE" > - DNNModel *model = NULL; > - // sizeof - 1 to skip the terminating '\0' which is not written in the file > - char buf[sizeof(DNN_NATIVE_MAGIC) - 1]; > - int version, header_size, major_version_expected = 1; > - NativeModel *native_model = NULL; > - AVIOContext *model_file_context; > - int file_size, dnn_size, parsed_size; > - int32_t layer; > - DNNLayerType layer_type; > - > - if (avio_open(&model_file_context, model_filename, AVIO_FLAG_READ) < 0){ > - return NULL; > - } > - file_size = avio_size(model_file_context); > - > - model = av_mallocz(sizeof(DNNModel)); > - if (!model){ > - goto fail; > - } > - > - /** > - * check file header with string and version > - */ > - if (avio_read(model_file_context, buf, sizeof(buf)) != sizeof(buf) || > - memcmp(buf, DNN_NATIVE_MAGIC, sizeof(buf))) > - goto fail; > - dnn_size = sizeof(buf); > - > - version = (int32_t)avio_rl32(model_file_context); > - dnn_size += 4; > - if (version != major_version_expected) { > - goto fail; > - } > - > - // currently no need to check minor version > - version = (int32_t)avio_rl32(model_file_context); > - dnn_size += 4; > - header_size = dnn_size; > - > - native_model = av_mallocz(sizeof(NativeModel)); > - if (!native_model){ > - goto fail; > - } > - model->model = native_model; > - > - native_model->ctx.class = &dnn_native_class; > - model->options = options; > - if (av_opt_set_from_string(&native_model->ctx, model->options, NULL, "=", "&") < 0) > - goto fail; > - native_model->model = model; > - > - if (native_model->ctx.options.async) { > - av_log(&native_model->ctx, AV_LOG_WARNING, "Async not supported. Rolling back to sync\n"); > - native_model->ctx.options.async = 0; > - } > - > -#if !HAVE_PTHREAD_CANCEL > - if (native_model->ctx.options.conv2d_threads > 1){ > - av_log(&native_model->ctx, AV_LOG_WARNING, "'conv2d_threads' option was set but it is not supported " > - "on this build (pthread support is required)\n"); > - } > -#endif > - > - avio_seek(model_file_context, file_size - 8, SEEK_SET); > - native_model->layers_num = (int32_t)avio_rl32(model_file_context); > - native_model->operands_num = (int32_t)avio_rl32(model_file_context); > - dnn_size += 8; > - avio_seek(model_file_context, header_size, SEEK_SET); > - > - native_model->layers = av_mallocz(native_model->layers_num * sizeof(Layer)); > - if (!native_model->layers){ > - goto fail; > - } > - > - native_model->operands = av_mallocz(native_model->operands_num * sizeof(DnnOperand)); > - if (!native_model->operands){ > - goto fail; > - } > - > - native_model->task_queue = ff_queue_create(); > - if (!native_model->task_queue) { > - goto fail; > - } > - > - native_model->lltask_queue = ff_queue_create(); > - if (!native_model->lltask_queue) { > - goto fail; > - } > - > - for (layer = 0; layer < native_model->layers_num; ++layer){ > - layer_type = (int32_t)avio_rl32(model_file_context); > - dnn_size += 4; > - > - if (layer_type >= DLT_COUNT) { > - goto fail; > - } > - > - native_model->layers[layer].type = layer_type; > - parsed_size = ff_layer_funcs[layer_type].pf_load(&native_model->layers[layer], model_file_context, file_size, native_model->operands_num); > - if (!parsed_size) { > - goto fail; > - } > - dnn_size += parsed_size; > - } > - > - for (int32_t i = 0; i < native_model->operands_num; ++i){ > - DnnOperand *oprd; > - int32_t name_len; > - int32_t operand_index = (int32_t)avio_rl32(model_file_context); > - dnn_size += 4; > - > - if (operand_index >= native_model->operands_num) { > - goto fail; > - } > - > - oprd = &native_model->operands[operand_index]; > - name_len = (int32_t)avio_rl32(model_file_context); > - dnn_size += 4; > - > - avio_get_str(model_file_context, name_len, oprd->name, sizeof(oprd->name)); > - dnn_size += name_len; > - > - oprd->type = (int32_t)avio_rl32(model_file_context); > - dnn_size += 4; > - > - oprd->data_type = (int32_t)avio_rl32(model_file_context); > - dnn_size += 4; > - > - for (int32_t dim = 0; dim < 4; ++dim) { > - oprd->dims[dim] = (int32_t)avio_rl32(model_file_context); > - dnn_size += 4; > - } > - if (oprd->type == DOT_INPUT && oprd->dims[0] != 1) > - goto fail; > - > - oprd->isNHWC = 1; > - } > - > - avio_closep(&model_file_context); > - > - if (dnn_size != file_size){ > - ff_dnn_free_model_native(&model); > - return NULL; > - } > - > - model->get_input = &get_input_native; > - model->get_output = &get_output_native; > - model->filter_ctx = filter_ctx; > - model->func_type = func_type; > - > - return model; > - > -fail: > - ff_dnn_free_model_native(&model); > - avio_closep(&model_file_context); > - return NULL; > -} > - > -static int execute_model_native(Queue *lltask_queue) > -{ > - NativeModel *native_model = NULL; > - NativeContext *ctx = NULL; > - int32_t layer; > - DNNData input, output; > - DnnOperand *oprd = NULL; > - LastLevelTaskItem *lltask = NULL; > - TaskItem *task = NULL; > - int ret = 0; > - > - lltask = ff_queue_pop_front(lltask_queue); > - if (!lltask) { > - av_log(NULL, AV_LOG_ERROR, "Failed to get LastLevelTaskItem\n"); > - ret = AVERROR(EINVAL); > - goto err; > - } > - task = lltask->task; > - native_model = task->model; > - ctx = &native_model->ctx; > - > - if (native_model->layers_num <= 0 || native_model->operands_num <= 0) { > - av_log(ctx, AV_LOG_ERROR, "No operands or layers in model\n"); > - ret = AVERROR(EINVAL); > - goto err; > - } > - > - for (int i = 0; i < native_model->operands_num; ++i) { > - oprd = &native_model->operands[i]; > - if (strcmp(oprd->name, task->input_name) == 0) { > - if (oprd->type != DOT_INPUT) { > - av_log(ctx, AV_LOG_ERROR, "Found \"%s\" in model, but it is not input node\n", task->input_name); > - ret = AVERROR(EINVAL); > - goto err; > - } > - break; > - } > - oprd = NULL; > - } > - if (!oprd) { > - av_log(ctx, AV_LOG_ERROR, "Could not find \"%s\" in model\n", task->input_name); > - ret = AVERROR(EINVAL); > - goto err; > - } > - > - oprd->dims[1] = task->in_frame->height; > - oprd->dims[2] = task->in_frame->width; > - > - av_freep(&oprd->data); > - oprd->length = ff_calculate_operand_data_length(oprd); > - if (oprd->length <= 0) { > - av_log(ctx, AV_LOG_ERROR, "The input data length overflow\n"); > - ret = AVERROR(EINVAL); > - goto err; > - } > - oprd->data = av_malloc(oprd->length); > - if (!oprd->data) { > - av_log(ctx, AV_LOG_ERROR, "Failed to malloc memory for input data\n"); > - ret = AVERROR(ENOMEM); > - goto err; > - } > - > - input.height = oprd->dims[1]; > - input.width = oprd->dims[2]; > - input.channels = oprd->dims[3]; > - input.data = oprd->data; > - input.dt = oprd->data_type; > - if (task->do_ioproc) { > - if (native_model->model->frame_pre_proc != NULL) { > - native_model->model->frame_pre_proc(task->in_frame, &input, native_model->model->filter_ctx); > - } else { > - ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx); > - } > - } > - > - if (task->nb_output != 1) { > - // currently, the filter does not need multiple outputs, > - // so we just pending the support until we really need it. > - avpriv_report_missing_feature(ctx, "multiple outputs"); > - ret = AVERROR(ENOSYS); > - goto err; > - } > - > - for (layer = 0; layer < native_model->layers_num; ++layer){ > - DNNLayerType layer_type = native_model->layers[layer].type; > - ret = ff_layer_funcs[layer_type].pf_exec(native_model->operands, > - native_model->layers[layer].input_operand_indexes, > - native_model->layers[layer].output_operand_index, > - native_model->layers[layer].params, > - &native_model->ctx); > - if (ret != 0) { > - av_log(ctx, AV_LOG_ERROR, "Failed to execute model\n"); > - goto err; > - } > - } > - > - for (uint32_t i = 0; i < task->nb_output; ++i) { > - DnnOperand *oprd = NULL; > - const char *output_name = task->output_names[i]; > - for (int j = 0; j < native_model->operands_num; ++j) { > - if (strcmp(native_model->operands[j].name, output_name) == 0) { > - oprd = &native_model->operands[j]; > - break; > - } > - } > - > - if (oprd == NULL) { > - av_log(ctx, AV_LOG_ERROR, "Could not find output in model\n"); > - ret = AVERROR(EINVAL); > - goto err; > - } > - > - output.data = oprd->data; > - output.height = oprd->dims[1]; > - output.width = oprd->dims[2]; > - output.channels = oprd->dims[3]; > - output.dt = oprd->data_type; > - > - if (task->do_ioproc) { > - if (native_model->model->frame_post_proc != NULL) { > - native_model->model->frame_post_proc(task->out_frame, &output, native_model->model->filter_ctx); > - } else { > - ff_proc_from_dnn_to_frame(task->out_frame, &output, ctx); > - } > - } else { > - task->out_frame->width = output.width; > - task->out_frame->height = output.height; > - } > - } > - task->inference_done++; > -err: > - av_freep(&lltask); > - return ret; > -} > - > -int ff_dnn_execute_model_native(const DNNModel *model, DNNExecBaseParams *exec_params) > -{ > - NativeModel *native_model = model->model; > - NativeContext *ctx = &native_model->ctx; > - TaskItem *task; > - int ret = 0; > - > - ret = ff_check_exec_params(ctx, DNN_NATIVE, model->func_type, exec_params); > - if (ret != 0) { > - return ret; > - } > - > - task = av_malloc(sizeof(*task)); > - if (!task) { > - av_log(ctx, AV_LOG_ERROR, "unable to alloc memory for task item.\n"); > - return AVERROR(ENOMEM); > - } > - > - ret = ff_dnn_fill_task(task, exec_params, native_model, ctx->options.async, 1); > - if (ret != 0) { > - av_freep(&task); > - return ret; > - } > - > - if (ff_queue_push_back(native_model->task_queue, task) < 0) { > - av_freep(&task); > - av_log(ctx, AV_LOG_ERROR, "unable to push back task_queue.\n"); > - return AVERROR(ENOMEM); > - } > - > - ret = extract_lltask_from_task(task, native_model->lltask_queue); > - if (ret != 0) { > - av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n"); > - return ret; > - } > - > - return execute_model_native(native_model->lltask_queue); > -} > - > -int ff_dnn_flush_native(const DNNModel *model) > -{ > - NativeModel *native_model = model->model; > - > - if (ff_queue_size(native_model->lltask_queue) == 0) { > - // no pending task need to flush > - return 0; > - } > - > - // for now, use sync node with flush operation > - // Switch to async when it is supported > - return execute_model_native(native_model->lltask_queue); > -} > - > -DNNAsyncStatusType ff_dnn_get_result_native(const DNNModel *model, AVFrame **in, AVFrame **out) > -{ > - NativeModel *native_model = model->model; > - return ff_dnn_get_result_common(native_model->task_queue, in, out); > -} > - > -int32_t ff_calculate_operand_dims_count(const DnnOperand *oprd) > -{ > - int32_t result = 1; > - for (int i = 0; i < 4; ++i) > - result *= oprd->dims[i]; > - > - return result; > -} > - > -int32_t ff_calculate_operand_data_length(const DnnOperand* oprd) > -{ > - // currently, we just support DNN_FLOAT > - uint64_t len = sizeof(float); > - for (int i = 0; i < 4; i++) { > - len *= oprd->dims[i]; > - if (len > INT32_MAX) > - return 0; > - } > - return len; > -} > - > -void ff_dnn_free_model_native(DNNModel **model) > -{ > - NativeModel *native_model; > - ConvolutionalParams *conv_params; > - int32_t layer; > - > - if (*model) > - { > - if ((*model)->model) { > - native_model = (*model)->model; > - if (native_model->layers) { > - for (layer = 0; layer < native_model->layers_num; ++layer){ > - if (native_model->layers[layer].type == DLT_CONV2D){ > - conv_params = (ConvolutionalParams *)native_model->layers[layer].params; > - av_freep(&conv_params->kernel); > - av_freep(&conv_params->biases); > - } > - av_freep(&native_model->layers[layer].params); > - } > - av_freep(&native_model->layers); > - } > - > - if (native_model->operands) { > - for (uint32_t operand = 0; operand < native_model->operands_num; ++operand) > - av_freep(&native_model->operands[operand].data); > - av_freep(&native_model->operands); > - } > - > - while (ff_queue_size(native_model->lltask_queue) != 0) { > - LastLevelTaskItem *item = ff_queue_pop_front(native_model->lltask_queue); > - av_freep(&item); > - } > - ff_queue_destroy(native_model->lltask_queue); > - > - while (ff_queue_size(native_model->task_queue) != 0) { > - TaskItem *item = ff_queue_pop_front(native_model->task_queue); > - av_frame_free(&item->in_frame); > - av_frame_free(&item->out_frame); > - av_freep(&item); > - } > - ff_queue_destroy(native_model->task_queue); > - > - av_freep(&native_model); > - } > - av_freep(model); > - } > -} > diff --git a/libavfilter/dnn/dnn_backend_native.h b/libavfilter/dnn/dnn_backend_native.h > deleted file mode 100644 > index 75bd9a44f7..0000000000 > --- a/libavfilter/dnn/dnn_backend_native.h > +++ /dev/null > @@ -1,149 +0,0 @@ > -/* > - * Copyright (c) 2018 Sergey Lavrushkin > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -/** > - * @file > - * DNN inference functions interface for native backend. > - */ > - > - > -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_H > -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_H > - > -#include "../dnn_interface.h" > -#include "libavformat/avio.h" > -#include "libavutil/opt.h" > -#include "queue.h" > - > -/** > - * the enum value of DNNLayerType should not be changed, > - * the same values are used in convert_from_tensorflow.py > - * and, it is used to index the layer execution/load function pointer. > - */ > -typedef enum { > - DLT_INPUT = 0, > - DLT_CONV2D = 1, > - DLT_DEPTH_TO_SPACE = 2, > - DLT_MIRROR_PAD = 3, > - DLT_MAXIMUM = 4, > - DLT_MATH_BINARY = 5, > - DLT_MATH_UNARY = 6, > - DLT_AVG_POOL = 7, > - DLT_DENSE = 8, > - DLT_COUNT > -} DNNLayerType; > - > -typedef enum {DOT_INPUT = 1, DOT_OUTPUT = 2, DOT_INTERMEDIATE = DOT_INPUT | DOT_OUTPUT} DNNOperandType; > -typedef enum {VALID, SAME, SAME_CLAMP_TO_EDGE} DNNPaddingParam; > -typedef enum {RELU, TANH, SIGMOID, NONE, LEAKY_RELU} DNNActivationFunc; > - > -typedef struct Layer{ > - DNNLayerType type; > - /** > - * a layer can have multiple inputs and one output. > - * 4 is just a big enough number for input operands (increase it if necessary), > - * do not use 'int32_t *input_operand_indexes', so we don't worry about mem leaks. > - */ > - int32_t input_operand_indexes[4]; > - int32_t output_operand_index; > - void *params; > -} Layer; > - > -typedef struct DnnOperand{ > - /** > - * there are two memory layouts, NHWC or NCHW, so we use dims, > - * dims[0] is Number. > - */ > - int32_t dims[4]; > - > - /** > - * input/output/intermediate operand of the network > - */ > - DNNOperandType type; > - > - /** > - * support different kinds of data type such as float, half float, int8 etc, > - * first support float now. > - */ > - DNNDataType data_type; > - > - /** > - * NHWC if 1, otherwise NCHW. > - * let's first support NHWC only, this flag is for extensive usage. > - */ > - int8_t isNHWC; > - > - /** > - * to avoid possible memory leak, do not use char *name > - */ > - char name[128]; > - > - /** > - * data pointer with data length in bytes. > - * usedNumbersLeft is only valid for intermediate operand, > - * it means how many layers still depend on this operand, > - * todo: the memory can be reused when usedNumbersLeft is zero. > - */ > - void *data; > - int32_t length; > - int32_t usedNumbersLeft; > -}DnnOperand; > - > -typedef struct InputParams{ > - int height, width, channels; > -} InputParams; > - > -typedef struct NativeOptions{ > - uint8_t async; > - uint32_t conv2d_threads; > -} NativeOptions; > - > -typedef struct NativeContext { > - const AVClass *class; > - NativeOptions options; > -} NativeContext; > - > -// Represents simple feed-forward convolutional network. > -typedef struct NativeModel{ > - NativeContext ctx; > - DNNModel *model; > - Layer *layers; > - int32_t layers_num; > - DnnOperand *operands; > - int32_t operands_num; > - Queue *task_queue; > - Queue *lltask_queue; > -} NativeModel; > - > -DNNModel *ff_dnn_load_model_native(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx); > - > -int ff_dnn_execute_model_native(const DNNModel *model, DNNExecBaseParams *exec_params); > - > -DNNAsyncStatusType ff_dnn_get_result_native(const DNNModel *model, AVFrame **in, AVFrame **out); > - > -int ff_dnn_flush_native(const DNNModel *model); > - > -void ff_dnn_free_model_native(DNNModel **model); > - > -// NOTE: User must check for error (return value <= 0) to handle > -// case like integer overflow. > -int32_t ff_calculate_operand_data_length(const DnnOperand *oprd); > -int32_t ff_calculate_operand_dims_count(const DnnOperand *oprd); > -#endif > diff --git a/libavfilter/dnn/dnn_backend_native_layer_avgpool.c b/libavfilter/dnn/dnn_backend_native_layer_avgpool.c > deleted file mode 100644 > index d6fcac8a35..0000000000 > --- a/libavfilter/dnn/dnn_backend_native_layer_avgpool.c > +++ /dev/null > @@ -1,147 +0,0 @@ > -/* > - * Copyright (c) 2020 > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -/** > - * @file > - * DNN native backend implementation. > - */ > - > -#include "libavutil/avassert.h" > -#include "dnn_backend_native_layer_avgpool.h" > - > -int ff_dnn_load_layer_avg_pool(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) > -{ > - AvgPoolParams *avgpool_params; > - int dnn_size = 0; > - avgpool_params = av_malloc(sizeof(*avgpool_params)); > - if(!avgpool_params) > - return 0; > - > - avgpool_params->strides = (int32_t)avio_rl32(model_file_context); > - avgpool_params->padding_method = (int32_t)avio_rl32(model_file_context); > - avgpool_params->kernel_size = (int32_t)avio_rl32(model_file_context); > - dnn_size += 12; > - > - if (dnn_size > file_size || avgpool_params->kernel_size <= 0 || avgpool_params->strides <=0){ > - av_freep(&avgpool_params); > - return 0; > - } > - > - layer->params = avgpool_params; > - layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); > - layer->output_operand_index = (int32_t)avio_rl32(model_file_context); > - dnn_size += 8; > - > - if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { > - return 0; > - } > - return dnn_size; > -} > - > -int ff_dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_operand_indexes, > - int32_t output_operand_index, const void *parameters, NativeContext *ctx) > -{ > - float *output; > - int height_end, width_end, height_radius, width_radius, output_height, output_width, kernel_area; > - int32_t input_operand_index = input_operand_indexes[0]; > - int number = operands[input_operand_index].dims[0]; > - int height = operands[input_operand_index].dims[1]; > - int width = operands[input_operand_index].dims[2]; > - int channel = operands[input_operand_index].dims[3]; > - const float *input = operands[input_operand_index].data; > - const AvgPoolParams *avgpool_params = parameters; > - > - int kernel_strides = avgpool_params->strides; > - int src_linesize = width * channel; > - DnnOperand *output_operand = &operands[output_operand_index]; > - > - /** > - * When padding_method = SAME, the tensorflow will only padding the hald number of 0 pixels > - * except the remainders. > - * Eg: assuming the input height = 1080, the strides = 11, so the remainders = 1080 % 11 = 2 > - * and if ksize = 5: it will fill (5 - 2) >> 1 = 1 line before the first line of input image, > - * and 5 - 2 - 1 = 2 lines after the last line of input image. > - * and if ksize = 7: it will fill (7 - 2) >> 1 = 2 lines before the first line of input image, > - * and 7 - 2 - 2 = 3 lines after the last line of input image. > - */ > - if (avgpool_params->padding_method == SAME) { > - height_end = height; > - width_end = width; > - height_radius = avgpool_params->kernel_size - ((height - 1) % kernel_strides + 1); > - width_radius = avgpool_params->kernel_size - ((width - 1) % kernel_strides + 1); > - height_radius = height_radius < 0 ? 0 : height_radius >> 1; > - width_radius = width_radius < 0 ? 0 : width_radius >> 1; > - output_height = ceil(height / (kernel_strides * 1.0)); > - output_width = ceil(width / (kernel_strides * 1.0)); > - } else { > - av_assert0(avgpool_params->padding_method == VALID); > - height_end = height - avgpool_params->kernel_size + 1; > - width_end = width - avgpool_params->kernel_size + 1; > - height_radius = 0; > - width_radius = 0; > - output_height = ceil((height - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0)); > - output_width = ceil((width - avgpool_params->kernel_size + 1) / (kernel_strides * 1.0)); > - } > - > - output_operand->dims[0] = number; > - output_operand->dims[1] = output_height; > - output_operand->dims[2] = output_width; > - // not support pooling in channel dimension now > - output_operand->dims[3] = channel; > - output_operand->data_type = operands[input_operand_index].data_type; > - output_operand->length = ff_calculate_operand_data_length(output_operand); > - if (output_operand->length <= 0) { > - av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); > - return AVERROR(EINVAL); > - } > - output_operand->data = av_realloc(output_operand->data, output_operand->length); > - if (!output_operand->data) { > - av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); > - return AVERROR(ENOMEM); > - } > - output = output_operand->data; > - > - for (int y = 0; y < height_end; y += kernel_strides) { > - for (int x = 0; x < width_end; x += kernel_strides) { > - for (int n_channel = 0; n_channel < channel; ++n_channel) { > - output[n_channel] = 0.0; > - kernel_area = 0; > - for (int kernel_y = 0; kernel_y < avgpool_params->kernel_size; ++kernel_y) { > - for (int kernel_x = 0; kernel_x < avgpool_params->kernel_size; ++kernel_x) { > - float input_pel; > - int y_pos = y + (kernel_y - height_radius); > - int x_pos = x + (kernel_x - width_radius); > - if (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) { > - input_pel = 0.0; > - } else { > - kernel_area++; > - input_pel = input[y_pos * src_linesize + x_pos * channel + n_channel]; > - } > - output[n_channel] += input_pel; > - } > - } > - output[n_channel] /= kernel_area; > - } > - output += channel; > - } > - } > - > - return 0; > -} > diff --git a/libavfilter/dnn/dnn_backend_native_layer_avgpool.h b/libavfilter/dnn/dnn_backend_native_layer_avgpool.h > deleted file mode 100644 > index 118a160090..0000000000 > --- a/libavfilter/dnn/dnn_backend_native_layer_avgpool.h > +++ /dev/null > @@ -1,69 +0,0 @@ > -/* > - * Copyright (c) 2020 > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -/** > - * @file > - * DNN inference functions interface for native backend. > - */ > - > -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_AVGPOOL_H > -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_AVGPOOL_H > - > -#include "dnn_backend_native.h" > - > -typedef struct AvgPoolParams{ > - int32_t strides, kernel_size; > - DNNPaddingParam padding_method; > -} AvgPoolParams; > - > -/** > - * @brief Load Average Pooling Layer. > - * > - * It assigns the Average Pooling layer with AvgPoolParams > - * after parsing from the model file context. > - * > - * @param layer pointer to the DNN layer instance > - * @param model_file_context pointer to model file context > - * @param file_size model file size to check if data is read > - * correctly from the model file > - * @param operands_num operand count of the whole model to > - * check if data is read correctly from the model file > - * @return number of bytes read from the model file > - * @retval 0 if out of memory or an error occurs > - */ > -int ff_dnn_load_layer_avg_pool(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); > - > -/** > - * @brief Execute the Average Pooling Layer. > - * Padding in channel dimensions is currently not supported. > - * > - * @param operands all operands for the model > - * @param input_operand_indexes input operand indexes for this layer > - * @param output_operand_index output operand index for this layer > - * @param parameters average pooling parameters > - * @param ctx pointer to Native model context for logging > - * @retval 0 if the execution succeeds > - * @retval AVERROR(ENOMEM) if memory allocation fails > - * @retval AVERROR(EINVAL) for invalid arguments > - */ > -int ff_dnn_execute_layer_avg_pool(DnnOperand *operands, const int32_t *input_operand_indexes, > - int32_t output_operand_index, const void *parameters, NativeContext *ctx); > - > -#endif > diff --git a/libavfilter/dnn/dnn_backend_native_layer_conv2d.c b/libavfilter/dnn/dnn_backend_native_layer_conv2d.c > deleted file mode 100644 > index 2ac37d8855..0000000000 > --- a/libavfilter/dnn/dnn_backend_native_layer_conv2d.c > +++ /dev/null > @@ -1,265 +0,0 @@ > -/* > - * Copyright (c) 2018 Sergey Lavrushkin > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -#include "libavutil/avassert.h" > -#include "libavutil/thread.h" > -#include "libavutil/cpu.h" > -#include "dnn_backend_native_layer_conv2d.h" > - > -#define CLAMP_TO_EDGE(x, w) ((x) < 0 ? 0 : ((x) >= (w) ? (w - 1) : (x))) > - > -//struct to pass parameters > -typedef struct ThreadCommonParam{ > - DnnOperand *operands; > - const int32_t *input_operand_indexes; > - int32_t output_operand_index; > - const void *parameters; > - NativeContext *ctx; > - float *output_data; > -} ThreadCommonParam; > - > -typedef struct ThreadParam{ > - ThreadCommonParam *thread_common_param; > - int thread_start, thread_end; > -#if HAVE_PTHREAD_CANCEL > - pthread_t thread; > -#endif > -} ThreadParam; > - > -int ff_dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) > -{ > - ConvolutionalParams *conv_params; > - int kernel_size; > - int dnn_size = 0; > - conv_params = av_malloc(sizeof(*conv_params)); > - if (!conv_params) > - return 0; > - > - conv_params->dilation = (int32_t)avio_rl32(model_file_context); > - conv_params->padding_method = (int32_t)avio_rl32(model_file_context); > - conv_params->activation = (int32_t)avio_rl32(model_file_context); > - conv_params->input_num = (int32_t)avio_rl32(model_file_context); > - conv_params->output_num = (int32_t)avio_rl32(model_file_context); > - conv_params->kernel_size = (int32_t)avio_rl32(model_file_context); > - conv_params->has_bias = (int32_t)avio_rl32(model_file_context); > - dnn_size += 28; > - > - kernel_size = conv_params->input_num * conv_params->output_num * > - conv_params->kernel_size * conv_params->kernel_size; > - dnn_size += kernel_size * 4; > - if (conv_params->has_bias) > - dnn_size += conv_params->output_num * 4; > - > - if (dnn_size > file_size || conv_params->input_num <= 0 || > - conv_params->output_num <= 0 || conv_params->kernel_size <= 0){ > - av_freep(&conv_params); > - return 0; > - } > - > - conv_params->kernel = av_malloc_array(kernel_size, sizeof(*conv_params->kernel)); > - if (!conv_params->kernel) { > - av_freep(&conv_params); > - return 0; > - } > - for (int i = 0; i < kernel_size; ++i) { > - conv_params->kernel[i] = av_int2float(avio_rl32(model_file_context)); > - } > - > - conv_params->biases = NULL; > - if (conv_params->has_bias) { > - conv_params->biases = av_malloc_array(conv_params->output_num, sizeof(*conv_params->biases)); > - if (!conv_params->biases){ > - av_freep(&conv_params->kernel); > - av_freep(&conv_params); > - return 0; > - } > - for (int i = 0; i < conv_params->output_num; ++i){ > - conv_params->biases[i] = av_int2float(avio_rl32(model_file_context)); > - } > - } > - > - layer->params = conv_params; > - > - layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); > - layer->output_operand_index = (int32_t)avio_rl32(model_file_context); > - dnn_size += 8; > - > - if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { > - return 0; > - } > - > - return dnn_size; > -} > - > -static void * dnn_execute_layer_conv2d_thread(void *threadarg) > -{ > - //pass parameters > - ThreadParam *thread_param = threadarg; > - ThreadCommonParam *thread_common_param = thread_param->thread_common_param; > - DnnOperand *operands = thread_common_param->operands; > - int32_t input_operand_index = thread_common_param->input_operand_indexes[0]; > - int height = operands[input_operand_index].dims[1]; > - int width = operands[input_operand_index].dims[2]; > - int channel = operands[input_operand_index].dims[3]; > - const float *input = operands[input_operand_index].data; > - const ConvolutionalParams *conv_params = thread_common_param->parameters; > - > - int radius = conv_params->kernel_size >> 1; > - int src_linesize = width * conv_params->input_num; > - int filter_linesize = conv_params->kernel_size * conv_params->input_num; > - int filter_size = conv_params->kernel_size * filter_linesize; > - int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0; > - > - float *output = thread_common_param->output_data; > - output += (conv_params->output_num) * (width - 2 * pad_size) * (thread_param->thread_start - pad_size); > - > - av_assert0(channel == conv_params->input_num); > - > - for (int y = thread_param->thread_start; y < thread_param->thread_end; ++y) { > - for (int x = pad_size; x < width - pad_size; ++x) { > - for (int n_filter = 0; n_filter < conv_params->output_num; ++n_filter) { > - if (conv_params->has_bias) > - output[n_filter] = conv_params->biases[n_filter]; > - else > - output[n_filter] = 0.f; > - > - for (int ch = 0; ch < conv_params->input_num; ++ch) { > - for (int kernel_y = 0; kernel_y < conv_params->kernel_size; ++kernel_y) { > - for (int kernel_x = 0; kernel_x < conv_params->kernel_size; ++kernel_x) { > - float input_pel; > - if (conv_params->padding_method == SAME_CLAMP_TO_EDGE) { > - int y_pos = CLAMP_TO_EDGE(y + (kernel_y - radius) * conv_params->dilation, height); > - int x_pos = CLAMP_TO_EDGE(x + (kernel_x - radius) * conv_params->dilation, width); > - input_pel = input[y_pos * src_linesize + x_pos * conv_params->input_num + ch]; > - } else { > - int y_pos = y + (kernel_y - radius) * conv_params->dilation; > - int x_pos = x + (kernel_x - radius) * conv_params->dilation; > - input_pel = (x_pos < 0 || x_pos >= width || y_pos < 0 || y_pos >= height) ? 0.0 : > - input[y_pos * src_linesize + x_pos * conv_params->input_num + ch]; > - } > - > - > - output[n_filter] += input_pel * conv_params->kernel[n_filter * filter_size + kernel_y * filter_linesize + > - kernel_x * conv_params->input_num + ch]; > - } > - } > - } > - switch (conv_params->activation){ > - case RELU: > - output[n_filter] = FFMAX(output[n_filter], 0.0); > - break; > - case TANH: > - output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f; > - break; > - case SIGMOID: > - output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter])); > - break; > - case NONE: > - break; > - case LEAKY_RELU: > - output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0); > - } > - } > - output += conv_params->output_num; > - } > - } > - return NULL; > -} > - > - > -int ff_dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes, > - int32_t output_operand_index, const void *parameters, NativeContext *ctx) > -{ > -#if HAVE_PTHREAD_CANCEL > - int thread_num = (ctx->options.conv2d_threads <= 0 || ctx->options.conv2d_threads > av_cpu_count()) > - ? (av_cpu_count() + 1) : (ctx->options.conv2d_threads); > - int ret = 0, thread_stride; > - ThreadParam *thread_param; > -#else > - ThreadParam thread_param = { 0 }; > -#endif > - ThreadCommonParam thread_common_param; > - const ConvolutionalParams *conv_params = parameters; > - int height = operands[input_operand_indexes[0]].dims[1]; > - int width = operands[input_operand_indexes[0]].dims[2]; > - int pad_size = (conv_params->padding_method == VALID) ? (conv_params->kernel_size - 1) / 2 * conv_params->dilation : 0; > - DnnOperand *output_operand = &operands[output_operand_index]; > - void *tmp; > - > - output_operand->dims[0] = operands[input_operand_indexes[0]].dims[0]; > - output_operand->dims[1] = height - pad_size * 2; > - output_operand->dims[2] = width - pad_size * 2; > - output_operand->dims[3] = conv_params->output_num; > - output_operand->data_type = operands[input_operand_indexes[0]].data_type; > - output_operand->length = ff_calculate_operand_data_length(output_operand); > - if (output_operand->length <= 0) { > - av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); > - return AVERROR(EINVAL); > - } > - tmp = av_realloc(output_operand->data, output_operand->length); > - if (!tmp) { > - av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); > - return AVERROR(ENOMEM); > - } > - output_operand->data = tmp; > - thread_common_param.output_data = output_operand->data; > - thread_common_param.operands = operands; > - thread_common_param.input_operand_indexes = input_operand_indexes; > - thread_common_param.output_operand_index = output_operand_index; > - thread_common_param.parameters = parameters; > - thread_common_param.ctx = ctx; > - > -#if HAVE_PTHREAD_CANCEL > - thread_param = av_malloc_array(thread_num, sizeof(*thread_param)); > - if (!thread_param) > - return AVERROR(ENOMEM); > - thread_stride = (height - pad_size * 2) / thread_num; > - //create threads > - for (int i = 0; i < thread_num; i++){ > - int thread_ret = 0; > - thread_param[i].thread_common_param = &thread_common_param; > - thread_param[i].thread_start = thread_stride * i + pad_size; > - thread_param[i].thread_end = (i == thread_num - 1) ? (height - pad_size) : (thread_param[i].thread_start + thread_stride); > - thread_ret = pthread_create(&thread_param[i].thread, NULL, > - dnn_execute_layer_conv2d_thread, &thread_param[i]); > - if (thread_ret) { > - thread_num = i; > - ret = AVERROR(thread_ret); > - break; > - } > - } > - > - for (int i = 0; i < thread_num; i++){ > - pthread_join(thread_param[i].thread, NULL); > - } > - > - //release memory > - av_freep(&thread_param); > - > - return ret; > -#else > - thread_param.thread_common_param = &thread_common_param; > - thread_param.thread_start = pad_size; > - thread_param.thread_end = height - pad_size; > - dnn_execute_layer_conv2d_thread(&thread_param); > - > - return 0; > -#endif > -} > diff --git a/libavfilter/dnn/dnn_backend_native_layer_conv2d.h b/libavfilter/dnn/dnn_backend_native_layer_conv2d.h > deleted file mode 100644 > index f754a9ba18..0000000000 > --- a/libavfilter/dnn/dnn_backend_native_layer_conv2d.h > +++ /dev/null > @@ -1,68 +0,0 @@ > -/* > - * Copyright (c) 2018 Sergey Lavrushkin > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_CONV2D_H > -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_CONV2D_H > - > -#include "dnn_backend_native.h" > - > - > -typedef struct ConvolutionalParams{ > - int32_t input_num, output_num, kernel_size; > - DNNActivationFunc activation; > - DNNPaddingParam padding_method; > - int32_t dilation; > - int32_t has_bias; > - float *kernel; > - float *biases; > -} ConvolutionalParams; > - > -/** > - * @brief Load the 2D Convolution Layer. > - * > - * It assigns the 2D convolution layer with ConvolutionalParams > - * after parsing from the model file context. > - * > - * @param layer pointer to the DNN layer instance > - * @param model_file_context pointer to model file context > - * @param file_size model file size to check if data is read > - * correctly from the model file > - * @param operands_num operand count of the whole model to > - * check if data is read correctly from the model file > - * @return number of bytes read from the model file > - * @retval 0 if out of memory or an error occurs > - */ > -int ff_dnn_load_layer_conv2d(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); > - > -/** > - * @brief Execute the 2D Convolution Layer. > - * > - * @param operands all operands for the model > - * @param input_operand_indexes input operand indexes for this layer > - * @param output_operand_index output operand index for this layer > - * @param parameters convolution parameters > - * @param ctx pointer to Native model context for logging > - * @retval 0 if the execution succeeds > - * @retval AVERROR(ENOMEM) if memory allocation fails > - * @retval AVERROR(EINVAL) for invalid arguments > - */ > -int ff_dnn_execute_layer_conv2d(DnnOperand *operands, const int32_t *input_operand_indexes, > - int32_t output_operand_index, const void *parameters, NativeContext *ctx); > -#endif > diff --git a/libavfilter/dnn/dnn_backend_native_layer_dense.c b/libavfilter/dnn/dnn_backend_native_layer_dense.c > deleted file mode 100644 > index dff342c1f3..0000000000 > --- a/libavfilter/dnn/dnn_backend_native_layer_dense.c > +++ /dev/null > @@ -1,151 +0,0 @@ > -/* > - * Copyright (c) 2020 > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -#include "libavutil/avassert.h" > -#include "dnn_backend_native_layer_dense.h" > - > -int ff_dnn_load_layer_dense(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) > -{ > - DenseParams *dense_params; > - int kernel_size; > - int dnn_size = 0; > - dense_params = av_malloc(sizeof(*dense_params)); > - if (!dense_params) > - return 0; > - > - dense_params->activation = (int32_t)avio_rl32(model_file_context); > - dense_params->input_num = (int32_t)avio_rl32(model_file_context); > - dense_params->output_num = (int32_t)avio_rl32(model_file_context); > - dense_params->has_bias = (int32_t)avio_rl32(model_file_context); > - dnn_size += 16; > - > - kernel_size = dense_params->input_num * dense_params->output_num; > - dnn_size += kernel_size * 4; > - if (dense_params->has_bias) > - dnn_size += dense_params->output_num * 4; > - > - if (dnn_size > file_size || dense_params->input_num <= 0 || > - dense_params->output_num <= 0){ > - av_freep(&dense_params); > - return 0; > - } > - > - dense_params->kernel = av_malloc(kernel_size * sizeof(float)); > - if (!dense_params->kernel) { > - av_freep(&dense_params); > - return 0; > - } > - for (int i = 0; i < kernel_size; ++i) { > - dense_params->kernel[i] = av_int2float(avio_rl32(model_file_context)); > - } > - > - dense_params->biases = NULL; > - if (dense_params->has_bias) { > - dense_params->biases = av_malloc(dense_params->output_num * sizeof(float)); > - if (!dense_params->biases){ > - av_freep(&dense_params->kernel); > - av_freep(&dense_params); > - return 0; > - } > - for (int i = 0; i < dense_params->output_num; ++i){ > - dense_params->biases[i] = av_int2float(avio_rl32(model_file_context)); > - } > - } > - > - layer->params = dense_params; > - > - layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); > - layer->output_operand_index = (int32_t)avio_rl32(model_file_context); > - dnn_size += 8; > - > - if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { > - return 0; > - } > - > - return dnn_size; > -} > - > -int ff_dnn_execute_layer_dense(DnnOperand *operands, const int32_t *input_operand_indexes, > - int32_t output_operand_index, const void *parameters, NativeContext *ctx) > -{ > - float *output; > - int32_t input_operand_index = input_operand_indexes[0]; > - int number = operands[input_operand_index].dims[0]; > - int height = operands[input_operand_index].dims[1]; > - int width = operands[input_operand_index].dims[2]; > - int channel = operands[input_operand_index].dims[3]; > - const float *input = operands[input_operand_index].data; > - const DenseParams *dense_params = parameters; > - > - int src_linesize = width * channel; > - DnnOperand *output_operand = &operands[output_operand_index]; > - output_operand->dims[0] = number; > - output_operand->dims[1] = height; > - output_operand->dims[2] = width; > - output_operand->dims[3] = dense_params->output_num; > - output_operand->data_type = operands[input_operand_index].data_type; > - output_operand->length = ff_calculate_operand_data_length(output_operand); > - if (output_operand->length <= 0) { > - av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); > - return AVERROR(EINVAL); > - } > - output_operand->data = av_realloc(output_operand->data, output_operand->length); > - if (!output_operand->data) { > - av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); > - return AVERROR(ENOMEM); > - } > - output = output_operand->data; > - > - av_assert0(channel == dense_params->input_num); > - > - for (int y = 0; y < height; ++y) { > - for (int x = 0; x < width; ++x) { > - for (int n_filter = 0; n_filter < dense_params->output_num; ++n_filter) { > - if (dense_params->has_bias) > - output[n_filter] = dense_params->biases[n_filter]; > - else > - output[n_filter] = 0.f; > - > - for (int ch = 0; ch < dense_params->input_num; ++ch) { > - float input_pel; > - input_pel = input[y * src_linesize + x * dense_params->input_num + ch]; > - output[n_filter] += input_pel * dense_params->kernel[n_filter*dense_params->input_num + ch]; > - } > - switch (dense_params->activation){ > - case RELU: > - output[n_filter] = FFMAX(output[n_filter], 0.0); > - break; > - case TANH: > - output[n_filter] = 2.0f / (1.0f + exp(-2.0f * output[n_filter])) - 1.0f; > - break; > - case SIGMOID: > - output[n_filter] = 1.0f / (1.0f + exp(-output[n_filter])); > - break; > - case NONE: > - break; > - case LEAKY_RELU: > - output[n_filter] = FFMAX(output[n_filter], 0.0) + 0.2 * FFMIN(output[n_filter], 0.0); > - } > - } > - output += dense_params->output_num; > - } > - } > - return 0; > -} > diff --git a/libavfilter/dnn/dnn_backend_native_layer_dense.h b/libavfilter/dnn/dnn_backend_native_layer_dense.h > deleted file mode 100644 > index 607fc3e684..0000000000 > --- a/libavfilter/dnn/dnn_backend_native_layer_dense.h > +++ /dev/null > @@ -1,65 +0,0 @@ > -/* > - * Copyright (c) 2020 > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DENSE_H > -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DENSE_H > - > -#include "dnn_backend_native.h" > - > -typedef struct DenseParams{ > - int32_t input_num, output_num; > - DNNActivationFunc activation; > - int32_t has_bias; > - float *kernel; > - float *biases; > -} DenseParams; > - > -/** > - * @brief Load the Densely-Connected Layer. > - * > - * It assigns the densely connected layer with DenseParams > - * after parsing from the model file context. > - * > - * @param layer pointer to the DNN layer instance > - * @param model_file_context pointer to model file context > - * @param file_size model file size to check if data is read > - * correctly from the model file > - * @param operands_num operand count of the whole model to > - * check if data is read correctly from the model file > - * @return number of bytes read from the model file > - * @retval 0 if out of memory or an error occurs > - */ > -int ff_dnn_load_layer_dense(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); > - > -/** > - * @brief Execute the Densely-Connected Layer. > - * > - * @param operands all operands for the model > - * @param input_operand_indexes input operand indexes for this layer > - * @param output_operand_index output operand index for this layer > - * @param parameters dense layer parameters > - * @param ctx pointer to Native model context for logging > - * @retval 0 if the execution succeeds > - * @retval AVERROR(ENOMEM) if memory allocation fails > - * @retval AVERROR(EINVAL) for invalid arguments > - */ > -int ff_dnn_execute_layer_dense(DnnOperand *operands, const int32_t *input_operand_indexes, > - int32_t output_operand_index, const void *parameters, NativeContext *ctx); > -#endif > diff --git a/libavfilter/dnn/dnn_backend_native_layer_depth2space.c b/libavfilter/dnn/dnn_backend_native_layer_depth2space.c > deleted file mode 100644 > index 358ac3bcaa..0000000000 > --- a/libavfilter/dnn/dnn_backend_native_layer_depth2space.c > +++ /dev/null > @@ -1,102 +0,0 @@ > -/* > - * Copyright (c) 2018 Sergey Lavrushkin > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -/** > - * @file > - * DNN native backend implementation. > - */ > - > -#include "dnn_backend_native.h" > -#include "dnn_backend_native_layer_depth2space.h" > - > -int ff_dnn_load_layer_depth2space(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) > -{ > - DepthToSpaceParams *params; > - int dnn_size = 0; > - params = av_malloc(sizeof(*params)); > - if (!params) > - return 0; > - > - params->block_size = (int32_t)avio_rl32(model_file_context); > - dnn_size += 4; > - layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); > - layer->output_operand_index = (int32_t)avio_rl32(model_file_context); > - dnn_size += 8; > - layer->params = params; > - > - if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { > - return 0; > - } > - > - return dnn_size; > -} > - > -int ff_dnn_execute_layer_depth2space(DnnOperand *operands, const int32_t *input_operand_indexes, > - int32_t output_operand_index, const void *parameters, NativeContext *ctx) > -{ > - float *output; > - const DepthToSpaceParams *params = parameters; > - int block_size = params->block_size; > - int32_t input_operand_index = input_operand_indexes[0]; > - int number = operands[input_operand_index].dims[0]; > - int height = operands[input_operand_index].dims[1]; > - int width = operands[input_operand_index].dims[2]; > - int channels = operands[input_operand_index].dims[3]; > - const float *input = operands[input_operand_index].data; > - > - int y, x, by, bx, ch; > - int new_channels = channels / (block_size * block_size); > - int output_linesize = width * channels; > - int by_linesize = output_linesize / block_size; > - int x_linesize = new_channels * block_size; > - > - DnnOperand *output_operand = &operands[output_operand_index]; > - output_operand->dims[0] = number; > - output_operand->dims[1] = height * block_size; > - output_operand->dims[2] = width * block_size; > - output_operand->dims[3] = new_channels; > - output_operand->data_type = operands[input_operand_index].data_type; > - output_operand->length = ff_calculate_operand_data_length(output_operand); > - if (output_operand->length <= 0) { > - av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); > - return AVERROR(EINVAL); > - } > - output_operand->data = av_realloc(output_operand->data, output_operand->length); > - if (!output_operand->data) { > - av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); > - return AVERROR(ENOMEM); > - } > - output = output_operand->data; > - > - for (y = 0; y < height; ++y){ > - for (x = 0; x < width; ++x){ > - for (by = 0; by < block_size; ++by){ > - for (bx = 0; bx < block_size; ++bx){ > - for (ch = 0; ch < new_channels; ++ch){ > - output[by * by_linesize + x * x_linesize + bx * new_channels + ch] = input[ch]; > - } > - input += new_channels; > - } > - } > - } > - output += output_linesize; > - } > - return 0; > -} > diff --git a/libavfilter/dnn/dnn_backend_native_layer_depth2space.h b/libavfilter/dnn/dnn_backend_native_layer_depth2space.h > deleted file mode 100644 > index aaf2df4c13..0000000000 > --- a/libavfilter/dnn/dnn_backend_native_layer_depth2space.h > +++ /dev/null > @@ -1,72 +0,0 @@ > -/* > - * Copyright (c) 2018 Sergey Lavrushkin > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -/** > - * @file > - * DNN inference functions interface for native backend. > - */ > - > - > -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DEPTH2SPACE_H > -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_DEPTH2SPACE_H > - > -#include "../dnn_interface.h" > -#include "libavformat/avio.h" > - > -typedef struct DepthToSpaceParams{ > - int block_size; > -} DepthToSpaceParams; > - > -/** > - * @brief Load the Depth to Space Layer. > - * > - * It assigns the depth to space layer with DepthToSpaceParams > - * after parsing from the model file context. > - * > - * @param layer pointer to the DNN layer instance > - * @param model_file_context pointer to model file context > - * @param file_size model file size to check if data is read > - * correctly from the model file > - * @param operands_num operand count of the whole model to > - * check if data is read correctly from the model file > - * @return number of bytes read from the model file > - * @retval 0 if an error occurs or out of memory > - */ > -int ff_dnn_load_layer_depth2space(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); > - > -/** > - * @brief Execute the Depth to Space Layer. > - * > - * It rearranges the input data from depth into spatial > - * form by applying Depth to Space transformation. > - * > - * @param operands all operands for the model > - * @param input_operand_indexes input operand indexes for this layer > - * @param output_operand_index output operand index for this layer > - * @param parameters depth to space layer parameters > - * @param ctx pointer to Native model context for logging > - * @retval 0 if the execution succeeds > - * @retval AVERROR(ENOMEM) if memory allocation fails > - * @retval AVERROR(EINVAL) for invalid arguments > - */ > -int ff_dnn_execute_layer_depth2space(DnnOperand *operands, const int32_t *input_operand_indexes, > - int32_t output_operand_index, const void *parameters, NativeContext *ctx); > - > -#endif > diff --git a/libavfilter/dnn/dnn_backend_native_layer_mathbinary.c b/libavfilter/dnn/dnn_backend_native_layer_mathbinary.c > deleted file mode 100644 > index 1a3fa3f132..0000000000 > --- a/libavfilter/dnn/dnn_backend_native_layer_mathbinary.c > +++ /dev/null > @@ -1,193 +0,0 @@ > -/* > - * Copyright (c) 2020 > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -/** > - * @file > - * DNN native backend implementation. > - */ > - > -#include "dnn_backend_native.h" > -#include "dnn_backend_native_layer_mathbinary.h" > - > -typedef float (*FunType)(float src0, float src1); > - > -static float sub(float src0, float src1) > -{ > - return src0 - src1; > -} > -static float add(float src0, float src1) > -{ > - return src0 + src1; > -} > -static float mul(float src0, float src1) > -{ > - return src0 * src1; > -} > -static float realdiv(float src0, float src1) > -{ > - return src0 / src1; > -} > -static float minimum(float src0, float src1) > -{ > - return FFMIN(src0, src1); > -} > -static float floormod(float src0, float src1) > -{ > - return (float)((int)(src0) % (int)(src1)); > -} > - > -static void math_binary_commutative(FunType pfun, const DnnLayerMathBinaryParams *params, const DnnOperand *input, DnnOperand *output, DnnOperand *operands, const int32_t *input_operand_indexes) > -{ > - int dims_count; > - const float *src; > - float *dst; > - dims_count = ff_calculate_operand_dims_count(output); > - src = input->data; > - dst = output->data; > - if (params->input0_broadcast || params->input1_broadcast) { > - for (int i = 0; i < dims_count; ++i) { > - dst[i] = pfun(params->v, src[i]); > - } > - } else { > - const DnnOperand *input1 = &operands[input_operand_indexes[1]]; > - const float *src1 = input1->data; > - for (int i = 0; i < dims_count; ++i) { > - dst[i] = pfun(src[i], src1[i]); > - } > - } > -} > -static void math_binary_not_commutative(FunType pfun, const DnnLayerMathBinaryParams *params, const DnnOperand *input, DnnOperand *output, DnnOperand *operands, const int32_t *input_operand_indexes) > -{ > - int dims_count; > - const float *src; > - float *dst; > - dims_count = ff_calculate_operand_dims_count(output); > - src = input->data; > - dst = output->data; > - if (params->input0_broadcast) { > - for (int i = 0; i < dims_count; ++i) { > - dst[i] = pfun(params->v, src[i]); > - } > - } else if (params->input1_broadcast) { > - for (int i = 0; i < dims_count; ++i) { > - dst[i] = pfun(src[i], params->v); > - } > - } else { > - const DnnOperand *input1 = &operands[input_operand_indexes[1]]; > - const float *src1 = input1->data; > - for (int i = 0; i < dims_count; ++i) { > - dst[i] = pfun(src[i], src1[i]); > - } > - } > -} > -int ff_dnn_load_layer_math_binary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) > -{ > - DnnLayerMathBinaryParams params = { 0 }; > - int dnn_size = 0; > - int input_index = 0; > - > - params.bin_op = (int32_t)avio_rl32(model_file_context); > - dnn_size += 4; > - > - params.input0_broadcast = (int32_t)avio_rl32(model_file_context); > - dnn_size += 4; > - if (params.input0_broadcast) { > - params.v = av_int2float(avio_rl32(model_file_context)); > - } else { > - layer->input_operand_indexes[input_index] = (int32_t)avio_rl32(model_file_context); > - if (layer->input_operand_indexes[input_index] >= operands_num) { > - return 0; > - } > - input_index++; > - } > - dnn_size += 4; > - > - params.input1_broadcast = (int32_t)avio_rl32(model_file_context); > - dnn_size += 4; > - if (params.input1_broadcast) { > - params.v = av_int2float(avio_rl32(model_file_context)); > - } else { > - layer->input_operand_indexes[input_index] = (int32_t)avio_rl32(model_file_context); > - if (layer->input_operand_indexes[input_index] >= operands_num) { > - return 0; > - } > - input_index++; > - } > - dnn_size += 4; > - > - layer->output_operand_index = (int32_t)avio_rl32(model_file_context); > - dnn_size += 4; > - > - if (layer->output_operand_index >= operands_num) { > - return 0; > - } > - layer->params = av_memdup(¶ms, sizeof(params)); > - if (!layer->params) > - return 0; > - > - return dnn_size; > -} > - > -int ff_dnn_execute_layer_math_binary(DnnOperand *operands, const int32_t *input_operand_indexes, > - int32_t output_operand_index, const void *parameters, NativeContext *ctx) > -{ > - const DnnOperand *input = &operands[input_operand_indexes[0]]; > - DnnOperand *output = &operands[output_operand_index]; > - const DnnLayerMathBinaryParams *params = parameters; > - > - for (int i = 0; i < 4; ++i) > - output->dims[i] = input->dims[i]; > - > - output->data_type = input->data_type; > - output->length = ff_calculate_operand_data_length(output); > - if (output->length <= 0) { > - av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); > - return AVERROR(EINVAL); > - } > - output->data = av_realloc(output->data, output->length); > - if (!output->data) { > - av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); > - return AVERROR(ENOMEM); > - } > - > - switch (params->bin_op) { > - case DMBO_SUB: > - math_binary_not_commutative(sub, params, input, output, operands, input_operand_indexes); > - return 0; > - case DMBO_ADD: > - math_binary_commutative(add, params, input, output, operands, input_operand_indexes); > - return 0; > - case DMBO_MUL: > - math_binary_commutative(mul, params, input, output, operands, input_operand_indexes); > - return 0; > - case DMBO_REALDIV: > - math_binary_not_commutative(realdiv, params, input, output, operands, input_operand_indexes); > - return 0; > - case DMBO_MINIMUM: > - math_binary_commutative(minimum, params, input, output, operands, input_operand_indexes); > - return 0; > - case DMBO_FLOORMOD: > - math_binary_not_commutative(floormod, params, input, output, operands, input_operand_indexes); > - return 0; > - default: > - av_log(ctx, AV_LOG_ERROR, "Unmatch math binary operator\n"); > - return AVERROR(EINVAL); > - } > -} > diff --git a/libavfilter/dnn/dnn_backend_native_layer_mathbinary.h b/libavfilter/dnn/dnn_backend_native_layer_mathbinary.h > deleted file mode 100644 > index eee294b00f..0000000000 > --- a/libavfilter/dnn/dnn_backend_native_layer_mathbinary.h > +++ /dev/null > @@ -1,54 +0,0 @@ > -/* > - * Copyright (c) 2020 > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -/** > - * @file > - * DNN inference functions interface for native backend. > - */ > - > - > -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHBINARY_H > -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHBINARY_H > - > -#include "libavformat/avio.h" > -#include "dnn_backend_native.h" > - > -typedef enum { > - DMBO_SUB = 0, > - DMBO_ADD = 1, > - DMBO_MUL = 2, > - DMBO_REALDIV = 3, > - DMBO_MINIMUM = 4, > - DMBO_FLOORMOD = 5, > - DMBO_COUNT > -} DNNMathBinaryOperation; > - > -typedef struct DnnLayerMathBinaryParams{ > - DNNMathBinaryOperation bin_op; > - int input0_broadcast; > - int input1_broadcast; > - float v; > -} DnnLayerMathBinaryParams; > - > -int ff_dnn_load_layer_math_binary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); > -int ff_dnn_execute_layer_math_binary(DnnOperand *operands, const int32_t *input_operand_indexes, > - int32_t output_operand_index, const void *parameters, NativeContext *ctx); > - > -#endif > diff --git a/libavfilter/dnn/dnn_backend_native_layer_mathunary.c b/libavfilter/dnn/dnn_backend_native_layer_mathunary.c > deleted file mode 100644 > index e3c5106e5e..0000000000 > --- a/libavfilter/dnn/dnn_backend_native_layer_mathunary.c > +++ /dev/null > @@ -1,156 +0,0 @@ > -/* > - * Copyright (c) 2020 > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -/** > - * @file > - * DNN native backend implementation. > - */ > - > -#include > - > -#include "dnn_backend_native.h" > -#include "dnn_backend_native_layer_mathunary.h" > - > -int ff_dnn_load_layer_math_unary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) > -{ > - DnnLayerMathUnaryParams *params; > - int dnn_size = 0; > - params = av_malloc(sizeof(*params)); > - if(!params) > - return 0; > - > - params->un_op = (int32_t)avio_rl32(model_file_context); > - dnn_size += 4; > - layer->params = params; > - layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); > - layer->output_operand_index = (int32_t)avio_rl32(model_file_context); > - dnn_size += 8; > - > - if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { > - return 0; > - } > - > - return dnn_size; > - > -} > - > -int ff_dnn_execute_layer_math_unary(DnnOperand *operands, const int32_t *input_operand_indexes, > - int32_t output_operand_index, const void *parameters, NativeContext *ctx) > -{ > - const DnnOperand *input = &operands[input_operand_indexes[0]]; > - DnnOperand *output = &operands[output_operand_index]; > - const DnnLayerMathUnaryParams *params = parameters; > - int dims_count; > - const float *src; > - float *dst; > - > - for (int i = 0; i < 4; ++i) > - output->dims[i] = input->dims[i]; > - > - output->data_type = input->data_type; > - output->length = ff_calculate_operand_data_length(output); > - if (output->length <= 0) { > - av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); > - return AVERROR(EINVAL); > - } > - output->data = av_realloc(output->data, output->length); > - if (!output->data) { > - av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); > - return AVERROR(ENOMEM); > - } > - > - dims_count = ff_calculate_operand_dims_count(output); > - src = input->data; > - dst = output->data; > - > - switch (params->un_op) { > - case DMUO_ABS: > - for (int i = 0; i < dims_count; ++i) > - dst[i] = FFABS(src[i]); > - return 0; > - case DMUO_SIN: > - for (int i = 0; i < dims_count; ++i) > - dst[i] = sin(src[i]); > - return 0; > - case DMUO_COS: > - for (int i = 0; i < dims_count; ++i) > - dst[i] = cos(src[i]); > - return 0; > - case DMUO_TAN: > - for (int i = 0; i < dims_count; ++i) > - dst[i] = tan(src[i]); > - return 0; > - case DMUO_ASIN: > - for (int i = 0; i < dims_count; ++i) > - dst[i] = asin(src[i]); > - return 0; > - case DMUO_ACOS: > - for (int i = 0; i < dims_count; ++i) > - dst[i] = acos(src[i]); > - return 0; > - case DMUO_ATAN: > - for (int i = 0; i < dims_count; ++i) > - dst[i] = atan(src[i]); > - return 0; > - case DMUO_SINH: > - for (int i = 0; i < dims_count; ++i) > - dst[i] = sinh(src[i]); > - return 0; > - case DMUO_COSH: > - for (int i = 0; i < dims_count; ++i) > - dst[i] = cosh(src[i]); > - return 0; > - case DMUO_TANH: > - for (int i = 0; i < dims_count; ++i) > - dst[i] = tanh(src[i]); > - return 0; > - case DMUO_ASINH: > - for (int i = 0; i < dims_count; ++i) > - dst[i] = asinh(src[i]); > - return 0; > - case DMUO_ACOSH: > - for (int i = 0; i < dims_count; ++i) > - dst[i] = acosh(src[i]); > - return 0; > - case DMUO_ATANH: > - for (int i = 0; i < dims_count; ++i) > - dst[i] = atanh(src[i]); > - return 0; > - case DMUO_CEIL: > - for (int i = 0; i < dims_count; ++i) > - dst[i] = ceil(src[i]); > - return 0; > - case DMUO_FLOOR: > - for (int i = 0; i < dims_count; ++i) > - dst[i] = floor(src[i]); > - return 0; > - case DMUO_ROUND: > - for (int i = 0; i < dims_count; ++i) > - dst[i] = round(src[i]); > - return 0; > - case DMUO_EXP: > - for (int i = 0; i < dims_count; ++i) > - dst[i] = exp(src[i]); > - return 0; > - default: > - av_log(ctx, AV_LOG_ERROR, "Unmatch math unary operator\n"); > - return AVERROR(EINVAL); > - } > -} > diff --git a/libavfilter/dnn/dnn_backend_native_layer_mathunary.h b/libavfilter/dnn/dnn_backend_native_layer_mathunary.h > deleted file mode 100644 > index 806e73b29f..0000000000 > --- a/libavfilter/dnn/dnn_backend_native_layer_mathunary.h > +++ /dev/null > @@ -1,92 +0,0 @@ > -/* > - * Copyright (c) 2020 > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -/** > - * @file > - * DNN inference functions interface for native backend. > - */ > - > -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHUNARY_H > -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MATHUNARY_H > - > -#include "libavformat/avio.h" > -#include "dnn_backend_native.h" > - > -typedef enum { > - DMUO_ABS = 0, > - DMUO_SIN = 1, > - DMUO_COS = 2, > - DMUO_TAN = 3, > - DMUO_ASIN = 4, > - DMUO_ACOS = 5, > - DMUO_ATAN = 6, > - DMUO_SINH = 7, > - DMUO_COSH = 8, > - DMUO_TANH = 9, > - DMUO_ASINH = 10, > - DMUO_ACOSH = 11, > - DMUO_ATANH = 12, > - DMUO_CEIL = 13, > - DMUO_FLOOR = 14, > - DMUO_ROUND = 15, > - DMUO_EXP = 16, > - DMUO_COUNT > -} DNNMathUnaryOperation; > - > -typedef struct DnnLayerMathUnaryParams{ > - DNNMathUnaryOperation un_op; > -} DnnLayerMathUnaryParams; > - > -/** > - * @brief Load the Unary Math Layer. > - * > - * It assigns the unary math layer with DnnLayerMathUnaryParams > - * after parsing from the model file context. > - * > - * @param layer pointer to the DNN layer instance > - * @param model_file_context pointer to model file context > - * @param file_size model file size to check if data is read > - * correctly from the model file > - * @param operands_num operand count of the whole model to > - * check if data is read correctly from the model file > - * @return number of bytes read from the model file > - * @retval 0 if out of memory or an error occurs > - */ > -int ff_dnn_load_layer_math_unary(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); > - > -/** > - * @brief Execute the Unary Math Layer. > - * > - * It applies the unary operator parsed while > - * loading to the given input operands. > - * > - * @param operands all operands for the model > - * @param input_operand_indexes input operand indexes for this layer > - * @param output_operand_index output operand index for this layer > - * @param parameters unary math layer parameters > - * @param ctx pointer to Native model context for logging > - * @retval 0 if the execution succeeds > - * @retval AVERROR(ENOMEM) if memory allocation fails > - * @retval AVERROR(EINVAL) for invalid arguments > - */ > -int ff_dnn_execute_layer_math_unary(DnnOperand *operands, const int32_t *input_operand_indexes, > - int32_t output_operand_index, const void *parameters, NativeContext *ctx); > - > -#endif > diff --git a/libavfilter/dnn/dnn_backend_native_layer_maximum.c b/libavfilter/dnn/dnn_backend_native_layer_maximum.c > deleted file mode 100644 > index 667efaa3b8..0000000000 > --- a/libavfilter/dnn/dnn_backend_native_layer_maximum.c > +++ /dev/null > @@ -1,83 +0,0 @@ > -/* > - * Copyright (c) 2019 Guo Yejun > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -/** > - * @file > - * DNN native backend implementation. > - */ > - > -#include "dnn_backend_native.h" > -#include "dnn_backend_native_layer_maximum.h" > - > -int ff_dnn_load_layer_maximum(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) > -{ > - DnnLayerMaximumParams *params; > - int dnn_size = 0; > - params = av_malloc(sizeof(*params)); > - if (!params) > - return 0; > - > - params->val.u32 = avio_rl32(model_file_context); > - dnn_size += 4; > - layer->params = params; > - layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); > - layer->output_operand_index = (int32_t)avio_rl32(model_file_context); > - dnn_size += 8; > - > - if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { > - return 0; > - } > - > - return dnn_size; > -} > - > -int ff_dnn_execute_layer_maximum(DnnOperand *operands, const int32_t *input_operand_indexes, > - int32_t output_operand_index, const void *parameters, NativeContext *ctx) > -{ > - const DnnOperand *input = &operands[input_operand_indexes[0]]; > - DnnOperand *output = &operands[output_operand_index]; > - const DnnLayerMaximumParams *params = parameters; > - int dims_count; > - const float *src; > - float *dst; > - > - for (int i = 0; i < 4; ++i) > - output->dims[i] = input->dims[i]; > - > - output->data_type = input->data_type; > - output->length = ff_calculate_operand_data_length(output); > - if (output->length <= 0) { > - av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); > - return AVERROR(EINVAL); > - } > - output->data = av_realloc(output->data, output->length); > - if (!output->data) { > - av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); > - return AVERROR(ENOMEM); > - } > - > - dims_count = ff_calculate_operand_dims_count(output); > - src = input->data; > - dst = output->data; > - for (int i = 0; i < dims_count; ++i) > - dst[i] = FFMAX(src[i], params->val.y); > - > - return 0; > -} > diff --git a/libavfilter/dnn/dnn_backend_native_layer_maximum.h b/libavfilter/dnn/dnn_backend_native_layer_maximum.h > deleted file mode 100644 > index 523acbe05f..0000000000 > --- a/libavfilter/dnn/dnn_backend_native_layer_maximum.h > +++ /dev/null > @@ -1,44 +0,0 @@ > -/* > - * Copyright (c) 2019 Guo Yejun > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -/** > - * @file > - * DNN inference functions interface for native backend. > - */ > - > - > -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MAXIMUM_H > -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_MAXIMUM_H > - > -#include "libavformat/avio.h" > -#include "dnn_backend_native.h" > - > -typedef struct DnnLayerMaximumParams{ > - union { > - uint32_t u32; > - float y; > - }val; > -} DnnLayerMaximumParams; > - > -int ff_dnn_load_layer_maximum(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); > -int ff_dnn_execute_layer_maximum(DnnOperand *operands, const int32_t *input_operand_indexes, > - int32_t output_operand_index, const void *parameters, NativeContext *ctx); > - > -#endif > diff --git a/libavfilter/dnn/dnn_backend_native_layer_pad.c b/libavfilter/dnn/dnn_backend_native_layer_pad.c > deleted file mode 100644 > index e274fe12c6..0000000000 > --- a/libavfilter/dnn/dnn_backend_native_layer_pad.c > +++ /dev/null > @@ -1,268 +0,0 @@ > -/* > - * Copyright (c) 2019 Guo Yejun > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -#include > -#include "libavutil/avassert.h" > -#include "dnn_backend_native_layer_pad.h" > - > -int ff_dnn_load_layer_pad(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num) > -{ > - LayerPadParams *params; > - int dnn_size = 0; > - params = av_malloc(sizeof(*params)); > - if (!params) > - return 0; > - > - params->mode = (int32_t)avio_rl32(model_file_context); > - dnn_size += 4; > - for (int i = 0; i < 4; ++i) { > - params->paddings[i][0] = avio_rl32(model_file_context); > - params->paddings[i][1] = avio_rl32(model_file_context); > - dnn_size += 8; > - } > - layer->input_operand_indexes[0] = (int32_t)avio_rl32(model_file_context); > - layer->output_operand_index = (int32_t)avio_rl32(model_file_context); > - dnn_size += 8; > - layer->params = params; > - > - if (layer->input_operand_indexes[0] >= operands_num || layer->output_operand_index >= operands_num) { > - return 0; > - } > - > - return dnn_size; > -} > - > -static int before_get_buddy(int given, int paddings, LayerPadModeParam mode) > -{ > - if (mode == LPMP_SYMMETRIC) { > - return (2 * paddings - 1 - given); > - } else if (mode == LPMP_REFLECT) { > - return (2 * paddings - given); > - } else { > - av_assert0(!"should not reach here"); > - return 0; > - } > -} > - > -static int after_get_buddy(int given, int border, LayerPadModeParam mode) > -{ > - if (mode == LPMP_SYMMETRIC) { > - int offset = given - border; > - return (border - 1 - offset); > - } else if (mode == LPMP_REFLECT) { > - int offset = given - border; > - return (border - 2 - offset); > - } else { > - av_assert0(!"should not reach here"); > - return 0; > - } > -} > - > -int ff_dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_indexes, > - int32_t output_operand_index, const void *parameters, NativeContext *ctx) > -{ > - int32_t before_paddings; > - int32_t after_paddings; > - float* output; > - const LayerPadParams *params = parameters; > - > - // suppose format is > - int32_t input_operand_index = input_operand_indexes[0]; > - int number = operands[input_operand_index].dims[0]; > - int height = operands[input_operand_index].dims[1]; > - int width = operands[input_operand_index].dims[2]; > - int channel = operands[input_operand_index].dims[3]; > - const float *input = operands[input_operand_index].data; > - > - int new_number = number + params->paddings[0][0] + params->paddings[0][1]; > - int new_height = height + params->paddings[1][0] + params->paddings[1][1]; > - int new_width = width + params->paddings[2][0] + params->paddings[2][1]; > - int new_channel = channel + params->paddings[3][0] + params->paddings[3][1]; > - > - int c_stride = channel; > - int wc_stride = c_stride * width; > - int hwc_stride = wc_stride * height; > - > - int new_c_stride = new_channel; > - int new_wc_stride = new_c_stride * new_width; > - int new_hwc_stride = new_wc_stride * new_height; > - > - DnnOperand *output_operand = &operands[output_operand_index]; > - output_operand->dims[0] = new_number; > - output_operand->dims[1] = new_height; > - output_operand->dims[2] = new_width; > - output_operand->dims[3] = new_channel; > - output_operand->data_type = operands[input_operand_index].data_type; > - output_operand->length = ff_calculate_operand_data_length(output_operand); > - if (output_operand->length <= 0) { > - av_log(ctx, AV_LOG_ERROR, "The output data length overflow\n"); > - return AVERROR(EINVAL); > - } > - output_operand->data = av_realloc(output_operand->data, output_operand->length); > - if (!output_operand->data) { > - av_log(ctx, AV_LOG_ERROR, "Failed to reallocate memory for output\n"); > - return AVERROR(ENOMEM); > - } > - output = output_operand->data; > - > - // copy the original data > - for (int n = 0; n < number; n++) { > - for (int h = 0; h < height; h++) { > - for (int w = 0; w < width; w++) { > - const float *src = input + n * hwc_stride + h * wc_stride + w * c_stride; > - float *dst = output + (n + params->paddings[0][0]) * new_hwc_stride > - + (h + params->paddings[1][0]) * new_wc_stride > - + (w + params->paddings[2][0]) * new_c_stride > - + params->paddings[3][0]; > - memcpy(dst, src, channel * sizeof(float)); > - } > - } > - } > - > - // handle the first dimension > - before_paddings = params->paddings[0][0]; > - after_paddings = params->paddings[0][1]; > - for (int n = 0; n < before_paddings; n++) { > - float *dst = output + n * new_hwc_stride; > - if (params->mode == LPMP_CONSTANT) { > - for (int i = 0; i < new_hwc_stride; i++) { > - dst[i] = params->constant_values; > - } > - } > - else { > - int buddy = before_get_buddy(n, before_paddings, params->mode); > - float *src = output + buddy * new_hwc_stride; > - memcpy(dst, src, new_hwc_stride * sizeof(float)); > - } > - } > - for (int n = 0; n < after_paddings; n++) { > - int given = number + before_paddings + n; > - float *dst = output + given * new_hwc_stride; > - if (params->mode == LPMP_CONSTANT) { > - for (int i = 0; i < new_hwc_stride; i++) { > - dst[i] = params->constant_values; > - } > - } else { > - int buddy = after_get_buddy(given, number + before_paddings, params->mode); > - float *src = output + buddy * new_hwc_stride; > - memcpy(dst, src, new_hwc_stride * sizeof(float)); > - } > - } > - > - // handle the second dimension > - before_paddings = params->paddings[1][0]; > - after_paddings = params->paddings[1][1]; > - for (int n = 0; n < new_number; n++) { > - float *start = output + n * new_hwc_stride; > - for (int h = 0; h < before_paddings; h++) { > - float *dst = start + h * new_wc_stride; > - if (params->mode == LPMP_CONSTANT) { > - for (int i = 0; i < new_wc_stride; i++) { > - dst[i] = params->constant_values; > - } > - } else { > - int buddy = before_get_buddy(h, before_paddings, params->mode); > - float *src = start + buddy * new_wc_stride; > - memcpy(dst, src, new_wc_stride * sizeof(float)); > - } > - } > - for (int h = 0; h < after_paddings; h++) { > - int given = height + before_paddings + h; > - float *dst = start + given * new_wc_stride; > - if (params->mode == LPMP_CONSTANT) { > - for (int i = 0; i < new_wc_stride; i++) { > - dst[i] = params->constant_values; > - } > - } else { > - int buddy = after_get_buddy(given, height + before_paddings, params->mode); > - float *src = start + buddy * new_wc_stride; > - memcpy(dst, src, new_wc_stride * sizeof(float)); > - } > - } > - } > - > - // handle the third dimension > - before_paddings = params->paddings[2][0]; > - after_paddings = params->paddings[2][1]; > - for (int n = 0; n < new_number; n++) { > - for (int h = 0; h < new_height; h++) { > - float *start = output + n * new_hwc_stride + h * new_wc_stride; > - for (int w = 0; w < before_paddings; w++) { > - float *dst = start + w * new_c_stride; > - if (params->mode == LPMP_CONSTANT) { > - for (int i = 0; i < new_c_stride; i++) { > - dst[i] = params->constant_values; > - } > - } else { > - int buddy = before_get_buddy(w, before_paddings, params->mode); > - float *src = start + buddy * new_c_stride; > - memcpy(dst, src, new_c_stride * sizeof(float)); > - } > - } > - for (int w = 0; w < after_paddings; w++) { > - int given = width + before_paddings + w; > - float *dst = start + given * new_c_stride; > - if (params->mode == LPMP_CONSTANT) { > - for (int i = 0; i < new_c_stride; i++) { > - dst[i] = params->constant_values; > - } > - } else { > - int buddy = after_get_buddy(given, width + before_paddings, params->mode); > - float *src = start + buddy * new_c_stride; > - memcpy(dst, src, new_c_stride * sizeof(float)); > - } > - } > - } > - } > - > - // handle the fourth dimension > - before_paddings = params->paddings[3][0]; > - after_paddings = params->paddings[3][1]; > - for (int n = 0; n < new_number; n++) { > - for (int h = 0; h < new_height; h++) { > - for (int w = 0; w < new_width; w++) { > - float *start = output + n * new_hwc_stride + h * new_wc_stride + w * new_c_stride; > - for (int c = 0; c < before_paddings; c++) { > - float *dst = start + c; > - if (params->mode == LPMP_CONSTANT) { > - *dst = params->constant_values; > - } else { > - int buddy = before_get_buddy(c, before_paddings, params->mode); > - float *src = start + buddy; > - *dst = *src; > - } > - } > - for (int c = 0; c < after_paddings; c++) { > - int given = channel + before_paddings + c; > - float *dst = start + given; > - if (params->mode == LPMP_CONSTANT) { > - *dst = params->constant_values; > - } else { > - int buddy = after_get_buddy(given, channel + before_paddings, params->mode); > - float *src = start + buddy; > - *dst = *src; > - } > - } > - } > - } > - } > - > - return 0; > -} > diff --git a/libavfilter/dnn/dnn_backend_native_layer_pad.h b/libavfilter/dnn/dnn_backend_native_layer_pad.h > deleted file mode 100644 > index 4f76c67c3f..0000000000 > --- a/libavfilter/dnn/dnn_backend_native_layer_pad.h > +++ /dev/null > @@ -1,43 +0,0 @@ > -/* > - * Copyright (c) 2019 Guo Yejun > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -/** > - * @file > - * layer pad (equivalent to tf.pad) for native backend. > - */ > -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_PAD_H > -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYER_PAD_H > - > -#include > -#include "dnn_backend_native.h" > - > -typedef enum {LPMP_CONSTANT, LPMP_REFLECT, LPMP_SYMMETRIC} LayerPadModeParam; > - > -typedef struct LayerPadParams{ > - int32_t paddings[4][2]; > - LayerPadModeParam mode; > - float constant_values; > -} LayerPadParams; > - > -int ff_dnn_load_layer_pad(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); > -int ff_dnn_execute_layer_pad(DnnOperand *operands, const int32_t *input_operand_indexes, > - int32_t output_operand_index, const void *parameters, NativeContext *ctx); > - > -#endif > diff --git a/libavfilter/dnn/dnn_backend_native_layers.c b/libavfilter/dnn/dnn_backend_native_layers.c > deleted file mode 100644 > index 492939fd36..0000000000 > --- a/libavfilter/dnn/dnn_backend_native_layers.c > +++ /dev/null > @@ -1,42 +0,0 @@ > -/* > - * Copyright (c) 2019 Guo Yejun > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -#include > -#include "dnn_backend_native_layers.h" > -#include "dnn_backend_native_layer_pad.h" > -#include "dnn_backend_native_layer_conv2d.h" > -#include "dnn_backend_native_layer_depth2space.h" > -#include "dnn_backend_native_layer_maximum.h" > -#include "dnn_backend_native_layer_mathbinary.h" > -#include "dnn_backend_native_layer_mathunary.h" > -#include "dnn_backend_native_layer_avgpool.h" > -#include "dnn_backend_native_layer_dense.h" > - > -const LayerFunc ff_layer_funcs[DLT_COUNT] = { > - {NULL, NULL}, > - {ff_dnn_execute_layer_conv2d, ff_dnn_load_layer_conv2d}, > - {ff_dnn_execute_layer_depth2space, ff_dnn_load_layer_depth2space}, > - {ff_dnn_execute_layer_pad, ff_dnn_load_layer_pad}, > - {ff_dnn_execute_layer_maximum, ff_dnn_load_layer_maximum}, > - {ff_dnn_execute_layer_math_binary, ff_dnn_load_layer_math_binary}, > - {ff_dnn_execute_layer_math_unary, ff_dnn_load_layer_math_unary}, > - {ff_dnn_execute_layer_avg_pool, ff_dnn_load_layer_avg_pool}, > - {ff_dnn_execute_layer_dense, ff_dnn_load_layer_dense}, > -}; > diff --git a/libavfilter/dnn/dnn_backend_native_layers.h b/libavfilter/dnn/dnn_backend_native_layers.h > deleted file mode 100644 > index bbd02927c2..0000000000 > --- a/libavfilter/dnn/dnn_backend_native_layers.h > +++ /dev/null > @@ -1,38 +0,0 @@ > -/* > - * Copyright (c) 2019 Guo Yejun > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -#ifndef AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYERS_H > -#define AVFILTER_DNN_DNN_BACKEND_NATIVE_LAYERS_H > - > -#include > -#include "dnn_backend_native.h" > - > -typedef int (*LAYER_EXEC_FUNC)(DnnOperand *operands, const int32_t *input_operand_indexes, > - int32_t output_operand_index, const void *parameters, NativeContext *ctx); > -typedef int (*LAYER_LOAD_FUNC)(Layer *layer, AVIOContext *model_file_context, int file_size, int operands_num); > - > -typedef struct LayerFunc { > - LAYER_EXEC_FUNC pf_exec; > - LAYER_LOAD_FUNC pf_load; > -}LayerFunc; > - > -extern const LayerFunc ff_layer_funcs[DLT_COUNT]; > - > -#endif > diff --git a/libavfilter/dnn/dnn_backend_tf.c b/libavfilter/dnn/dnn_backend_tf.c > index 3b5084b67b..4a099d10ed 100644 > --- a/libavfilter/dnn/dnn_backend_tf.c > +++ b/libavfilter/dnn/dnn_backend_tf.c > @@ -24,17 +24,13 @@ > */ > > #include "dnn_backend_tf.h" > -#include "dnn_backend_native.h" > -#include "dnn_backend_native_layer_conv2d.h" > -#include "dnn_backend_native_layer_depth2space.h" > #include "libavformat/avio.h" > #include "libavutil/avassert.h" > #include "libavutil/avstring.h" > #include "libavutil/cpu.h" > +#include "libavutil/opt.h" > #include "libavcodec/defs.h" > #include "../internal.h" > -#include "dnn_backend_native_layer_pad.h" > -#include "dnn_backend_native_layer_maximum.h" > #include "dnn_io_proc.h" > #include "dnn_backend_common.h" > #include "safe_queue.h" > @@ -492,363 +488,6 @@ static int load_tf_model(TFModel *tf_model, const char *model_filename) > > #define NAME_BUFFER_SIZE 256 > > -static int add_conv_layer(TFModel *tf_model, TF_Operation *transpose_op, TF_Operation **cur_op, > - ConvolutionalParams* params, const int layer) > -{ > - TFContext *ctx = &tf_model->ctx; > - TF_Operation *op; > - TF_OperationDescription *op_desc; > - TF_Output input; > - int64_t strides[] = {1, 1, 1, 1}; > - TF_Tensor *kernel_tensor = NULL, *biases_tensor = NULL; > - int64_t dims[4]; > - int dims_len; > - char name_buffer[NAME_BUFFER_SIZE]; > - int32_t size; > - > - size = params->input_num * params->output_num * params->kernel_size * params->kernel_size; > - input.index = 0; > - > - snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_kernel%d", layer); > - op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); > - TF_SetAttrType(op_desc, "dtype", TF_FLOAT); > - dims[0] = params->output_num; > - dims[1] = params->kernel_size; > - dims[2] = params->kernel_size; > - dims[3] = params->input_num; > - dims_len = 4; > - kernel_tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, size * sizeof(float)); > - memcpy(TF_TensorData(kernel_tensor), params->kernel, size * sizeof(float)); > - TF_SetAttrTensor(op_desc, "value", kernel_tensor, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - goto err; > - } > - op = TF_FinishOperation(op_desc, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - goto err; > - } > - > - snprintf(name_buffer, NAME_BUFFER_SIZE, "transpose%d", layer); > - op_desc = TF_NewOperation(tf_model->graph, "Transpose", name_buffer); > - input.oper = op; > - TF_AddInput(op_desc, input); > - input.oper = transpose_op; > - TF_AddInput(op_desc, input); > - TF_SetAttrType(op_desc, "T", TF_FLOAT); > - TF_SetAttrType(op_desc, "Tperm", TF_INT32); > - op = TF_FinishOperation(op_desc, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - goto err; > - } > - > - snprintf(name_buffer, NAME_BUFFER_SIZE, "conv2d%d", layer); > - op_desc = TF_NewOperation(tf_model->graph, "Conv2D", name_buffer); > - input.oper = *cur_op; > - TF_AddInput(op_desc, input); > - input.oper = op; > - TF_AddInput(op_desc, input); > - TF_SetAttrType(op_desc, "T", TF_FLOAT); > - TF_SetAttrIntList(op_desc, "strides", strides, 4); > - TF_SetAttrString(op_desc, "padding", "VALID", 5); > - *cur_op = TF_FinishOperation(op_desc, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - goto err; > - } > - > - snprintf(name_buffer, NAME_BUFFER_SIZE, "conv_biases%d", layer); > - op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); > - TF_SetAttrType(op_desc, "dtype", TF_FLOAT); > - dims[0] = params->output_num; > - dims_len = 1; > - biases_tensor = TF_AllocateTensor(TF_FLOAT, dims, dims_len, params->output_num * sizeof(float)); > - memcpy(TF_TensorData(biases_tensor), params->biases, params->output_num * sizeof(float)); > - TF_SetAttrTensor(op_desc, "value", biases_tensor, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - goto err; > - } > - op = TF_FinishOperation(op_desc, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - goto err; > - } > - > - snprintf(name_buffer, NAME_BUFFER_SIZE, "bias_add%d", layer); > - op_desc = TF_NewOperation(tf_model->graph, "BiasAdd", name_buffer); > - input.oper = *cur_op; > - TF_AddInput(op_desc, input); > - input.oper = op; > - TF_AddInput(op_desc, input); > - TF_SetAttrType(op_desc, "T", TF_FLOAT); > - *cur_op = TF_FinishOperation(op_desc, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - goto err; > - } > - > - snprintf(name_buffer, NAME_BUFFER_SIZE, "activation%d", layer); > - switch (params->activation){ > - case RELU: > - op_desc = TF_NewOperation(tf_model->graph, "Relu", name_buffer); > - break; > - case TANH: > - op_desc = TF_NewOperation(tf_model->graph, "Tanh", name_buffer); > - break; > - case SIGMOID: > - op_desc = TF_NewOperation(tf_model->graph, "Sigmoid", name_buffer); > - break; > - default: > - avpriv_report_missing_feature(ctx, "convolutional activation function %d", params->activation); > - return AVERROR(ENOSYS); > - } > - input.oper = *cur_op; > - TF_AddInput(op_desc, input); > - TF_SetAttrType(op_desc, "T", TF_FLOAT); > - *cur_op = TF_FinishOperation(op_desc, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - goto err; > - } > - > - return 0; > -err: > - TF_DeleteTensor(kernel_tensor); > - TF_DeleteTensor(biases_tensor); > - av_log(ctx, AV_LOG_ERROR, "Failed to add conv layer %d\n", layer); > - return DNN_GENERIC_ERROR; > -} > - > -static int add_depth_to_space_layer(TFModel *tf_model, TF_Operation **cur_op, > - DepthToSpaceParams *params, const int layer) > -{ > - TFContext *ctx = &tf_model->ctx; > - TF_OperationDescription *op_desc; > - TF_Output input; > - char name_buffer[NAME_BUFFER_SIZE]; > - > - snprintf(name_buffer, NAME_BUFFER_SIZE, "depth_to_space%d", layer); > - op_desc = TF_NewOperation(tf_model->graph, "DepthToSpace", name_buffer); > - input.oper = *cur_op; > - input.index = 0; > - TF_AddInput(op_desc, input); > - TF_SetAttrType(op_desc, "T", TF_FLOAT); > - TF_SetAttrInt(op_desc, "block_size", params->block_size); > - *cur_op = TF_FinishOperation(op_desc, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - av_log(ctx, AV_LOG_ERROR, "Failed to add depth_to_space to layer %d\n", layer); > - return DNN_GENERIC_ERROR; > - } > - > - return 0; > -} > - > -static int add_pad_layer(TFModel *tf_model, TF_Operation **cur_op, > - LayerPadParams *params, const int layer) > -{ > - TFContext *ctx = &tf_model->ctx; > - TF_Operation *op; > - TF_Tensor *tensor; > - TF_OperationDescription *op_desc; > - TF_Output input; > - int32_t *pads; > - int64_t pads_shape[] = {4, 2}; > - > - char name_buffer[NAME_BUFFER_SIZE]; > - snprintf(name_buffer, NAME_BUFFER_SIZE, "pad%d", layer); > - > - op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); > - TF_SetAttrType(op_desc, "dtype", TF_INT32); > - tensor = TF_AllocateTensor(TF_INT32, pads_shape, 2, 4 * 2 * sizeof(int32_t)); > - pads = (int32_t *)TF_TensorData(tensor); > - pads[0] = params->paddings[0][0]; > - pads[1] = params->paddings[0][1]; > - pads[2] = params->paddings[1][0]; > - pads[3] = params->paddings[1][1]; > - pads[4] = params->paddings[2][0]; > - pads[5] = params->paddings[2][1]; > - pads[6] = params->paddings[3][0]; > - pads[7] = params->paddings[3][1]; > - TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - TF_DeleteTensor(tensor); > - av_log(ctx, AV_LOG_ERROR, "Failed to set value for pad of layer %d\n", layer); > - return DNN_GENERIC_ERROR; > - } > - op = TF_FinishOperation(op_desc, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - TF_DeleteTensor(tensor); > - av_log(ctx, AV_LOG_ERROR, "Failed to add pad to layer %d\n", layer); > - return DNN_GENERIC_ERROR; > - } > - > - op_desc = TF_NewOperation(tf_model->graph, "MirrorPad", "mirror_pad"); > - input.oper = *cur_op; > - input.index = 0; > - TF_AddInput(op_desc, input); > - input.oper = op; > - TF_AddInput(op_desc, input); > - TF_SetAttrType(op_desc, "T", TF_FLOAT); > - TF_SetAttrType(op_desc, "Tpaddings", TF_INT32); > - TF_SetAttrString(op_desc, "mode", "SYMMETRIC", 9); > - *cur_op = TF_FinishOperation(op_desc, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - TF_DeleteTensor(tensor); > - av_log(ctx, AV_LOG_ERROR, "Failed to add mirror_pad to layer %d\n", layer); > - return DNN_GENERIC_ERROR; > - } > - > - return 0; > -} > - > -static int add_maximum_layer(TFModel *tf_model, TF_Operation **cur_op, > - DnnLayerMaximumParams *params, const int layer) > -{ > - TFContext *ctx = &tf_model->ctx; > - TF_Operation *op; > - TF_Tensor *tensor; > - TF_OperationDescription *op_desc; > - TF_Output input; > - float *y; > - > - char name_buffer[NAME_BUFFER_SIZE]; > - snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum/y%d", layer); > - > - op_desc = TF_NewOperation(tf_model->graph, "Const", name_buffer); > - TF_SetAttrType(op_desc, "dtype", TF_FLOAT); > - tensor = TF_AllocateTensor(TF_FLOAT, NULL, 0, TF_DataTypeSize(TF_FLOAT)); > - y = (float *)TF_TensorData(tensor); > - *y = params->val.y; > - TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - TF_DeleteTensor(tensor); > - av_log(ctx, AV_LOG_ERROR, "Failed to set value for maximum/y of layer %d", layer); > - return DNN_GENERIC_ERROR; > - } > - op = TF_FinishOperation(op_desc, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - TF_DeleteTensor(tensor); > - av_log(ctx, AV_LOG_ERROR, "Failed to add maximum/y to layer %d\n", layer); > - return DNN_GENERIC_ERROR; > - } > - > - snprintf(name_buffer, NAME_BUFFER_SIZE, "maximum%d", layer); > - op_desc = TF_NewOperation(tf_model->graph, "Maximum", name_buffer); > - input.oper = *cur_op; > - input.index = 0; > - TF_AddInput(op_desc, input); > - input.oper = op; > - TF_AddInput(op_desc, input); > - TF_SetAttrType(op_desc, "T", TF_FLOAT); > - *cur_op = TF_FinishOperation(op_desc, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - TF_DeleteTensor(tensor); > - av_log(ctx, AV_LOG_ERROR, "Failed to add maximum to layer %d\n", layer); > - return DNN_GENERIC_ERROR; > - } > - > - return 0; > -} > - > -static int load_native_model(TFModel *tf_model, const char *model_filename) > -{ > - TFContext *ctx = &tf_model->ctx; > - int32_t layer; > - TF_OperationDescription *op_desc; > - TF_Operation *op; > - TF_Operation *transpose_op; > - TF_Tensor *tensor = NULL; > - TF_Output input; > - int32_t *transpose_perm; > - int64_t transpose_perm_shape[] = {4}; > - int64_t input_shape[] = {1, -1, -1, -1}; > - int layer_add_res; > - DNNModel *model = NULL; > - NativeModel *native_model; > - > - model = ff_dnn_load_model_native(model_filename, DFT_PROCESS_FRAME, NULL, NULL); > - if (!model){ > - av_log(ctx, AV_LOG_ERROR, "Failed to load native model\n"); > - return AVERROR(EINVAL); > - } > - > - native_model = model->model; > - tf_model->graph = TF_NewGraph(); > - tf_model->status = TF_NewStatus(); > - > -#define CLEANUP_ON_ERROR(tf_model) \ > - { \ > - TF_DeleteTensor(tensor); \ > - TF_DeleteGraph(tf_model->graph); \ > - TF_DeleteStatus(tf_model->status); \ > - av_log(ctx, AV_LOG_ERROR, "Failed to set value or add operator to layer\n"); \ > - return DNN_GENERIC_ERROR; \ > - } > - > - op_desc = TF_NewOperation(tf_model->graph, "Placeholder", "x"); > - TF_SetAttrType(op_desc, "dtype", TF_FLOAT); > - TF_SetAttrShape(op_desc, "shape", input_shape, 4); > - op = TF_FinishOperation(op_desc, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - CLEANUP_ON_ERROR(tf_model); > - } > - > - op_desc = TF_NewOperation(tf_model->graph, "Const", "transpose_perm"); > - TF_SetAttrType(op_desc, "dtype", TF_INT32); > - tensor = TF_AllocateTensor(TF_INT32, transpose_perm_shape, 1, 4 * sizeof(int32_t)); > - transpose_perm = (int32_t *)TF_TensorData(tensor); > - transpose_perm[0] = 1; > - transpose_perm[1] = 2; > - transpose_perm[2] = 3; > - transpose_perm[3] = 0; > - TF_SetAttrTensor(op_desc, "value", tensor, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - CLEANUP_ON_ERROR(tf_model); > - } > - transpose_op = TF_FinishOperation(op_desc, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - CLEANUP_ON_ERROR(tf_model); > - } > - > - for (layer = 0; layer < native_model->layers_num; ++layer){ > - switch (native_model->layers[layer].type){ > - case DLT_INPUT: > - layer_add_res = 0; > - break; > - case DLT_CONV2D: > - layer_add_res = add_conv_layer(tf_model, transpose_op, &op, > - (ConvolutionalParams *)native_model->layers[layer].params, layer); > - break; > - case DLT_DEPTH_TO_SPACE: > - layer_add_res = add_depth_to_space_layer(tf_model, &op, > - (DepthToSpaceParams *)native_model->layers[layer].params, layer); > - break; > - case DLT_MIRROR_PAD: > - layer_add_res = add_pad_layer(tf_model, &op, > - (LayerPadParams *)native_model->layers[layer].params, layer); > - break; > - case DLT_MAXIMUM: > - layer_add_res = add_maximum_layer(tf_model, &op, > - (DnnLayerMaximumParams *)native_model->layers[layer].params, layer); > - break; > - default: > - CLEANUP_ON_ERROR(tf_model); > - } > - > - if (layer_add_res != 0){ > - CLEANUP_ON_ERROR(tf_model); > - } > - } > - > - op_desc = TF_NewOperation(tf_model->graph, "Identity", "y"); > - input.oper = op; > - input.index = 0; > - TF_AddInput(op_desc, input); > - TF_FinishOperation(op_desc, tf_model->status); > - if (TF_GetCode(tf_model->status) != TF_OK){ > - CLEANUP_ON_ERROR(tf_model); > - } > - > - ff_dnn_free_model_native(&model); > - > - return 0; > -} > - > DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx) > { > DNNModel *model = NULL; > @@ -877,9 +516,8 @@ DNNModel *ff_dnn_load_model_tf(const char *model_filename, DNNFunctionType func_ > } > > if (load_tf_model(tf_model, model_filename) != 0){ > - if (load_native_model(tf_model, model_filename) != 0){ > - goto err; > - } > + av_log(ctx, AV_LOG_ERROR, "Failed to load TensorFlow model: \"%s\"\n", model_filename); > + goto err; > } > > if (ctx->options.nireq <= 0) { > diff --git a/libavfilter/dnn/dnn_interface.c b/libavfilter/dnn/dnn_interface.c > index fa484c0905..12d36f7fed 100644 > --- a/libavfilter/dnn/dnn_interface.c > +++ b/libavfilter/dnn/dnn_interface.c > @@ -24,7 +24,6 @@ > */ > > #include "../dnn_interface.h" > -#include "dnn_backend_native.h" > #include "dnn_backend_tf.h" > #include "dnn_backend_openvino.h" > #include "libavutil/mem.h" > @@ -40,12 +39,9 @@ DNNModule *ff_get_dnn_module(DNNBackendType backend_type) > > switch(backend_type){ > case DNN_NATIVE: > - dnn_module->load_model = &ff_dnn_load_model_native; > - dnn_module->execute_model = &ff_dnn_execute_model_native; > - dnn_module->get_result = &ff_dnn_get_result_native; > - dnn_module->flush = &ff_dnn_flush_native; > - dnn_module->free_model = &ff_dnn_free_model_native; > - break; > + av_log(NULL, AV_LOG_ERROR, "Native backend is deprecated, please use other supported DNN backends.\n"); > + av_freep(&dnn_module); > + return NULL; > case DNN_TF: > #if (CONFIG_LIBTENSORFLOW == 1) > dnn_module->load_model = &ff_dnn_load_model_tf; > diff --git a/libavfilter/tests/dnn-layer-avgpool.c b/libavfilter/tests/dnn-layer-avgpool.c > deleted file mode 100644 > index 4a925ea22a..0000000000 > --- a/libavfilter/tests/dnn-layer-avgpool.c > +++ /dev/null > @@ -1,197 +0,0 @@ > -/* > - * Copyright (c) 2020 > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -#include > -#include "libavfilter/dnn/dnn_backend_native_layer_avgpool.h" > - > -#define EPSON 0.00001 > - > -static int test_with_same(void) > -{ > - // the input data and expected data are generated with below python code. > - /* > - import tensorflow as tf > - import numpy as np > - > - x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) > - y = tf.layers.average_pooling2d(x, pool_size=[2,2], strides=[1,1], padding='VALID') > - data = np.random.rand(1, 5, 6, 3); > - > - sess=tf.Session() > - sess.run(tf.global_variables_initializer()) > - > - output = sess.run(y, feed_dict={x: data}) > - > - print("input:") > - print(data.shape) > - print(list(data.flatten())) > - > - print("output:") > - print(output.shape) > - print(list(output.flatten())) > - */ > - > - AvgPoolParams params; > - DnnOperand operands[2]; > - int32_t input_indexes[1]; > - float input[1*5*6*3] = { > - 0.7461309859908424, 0.7567538372797069, 0.07662743569678687, 0.8882112610336333, 0.9720443314026668, 0.3337200343220823, 0.4421032129780248, > - 0.14940809044964876, 0.6773177061961277, 0.9778844630669781, 0.6522650522626998, 0.0317651530878591, 0.31259897552911364, 0.6235936821891896, > - 0.40016094349542775, 0.4599222930032276, 0.7893807222960093, 0.8475986363538283, 0.5058802717647394, 0.7827005363222633, 0.3032188123727916, > - 0.8983728631302361, 0.20622408444965523, 0.22966072303869878, 0.09535751273161308, 0.8760709100995375, 0.9982324154558745, 0.7904595468621013, > - 0.13883671508879347, 0.9332751439533138, 0.0010861680752152214, 0.3607210449251048, 0.6600652759586171, 0.7629572058138805, 0.29441975810476106, > - 0.2683471432889405, 0.22574580829831536, 0.8893251976212904, 0.3907737043801005, 0.6421829842863968, 0.6670373870457297, 0.9383850793160277, > - 0.4120458907436003, 0.3589847212711481, 0.48047736550128983, 0.6428192648418949, 0.0313661686292348, 0.429357100401472, 0.5123413386514056, > - 0.8492446404097114, 0.9045286128486804, 0.8123708563814285, 0.3943245008451698, 0.9576713003177785, 0.5985610965938726, 0.9350833279543561, > - 0.8010079897491659, 0.45882114217642866, 0.35275037908941487, 0.4555844661432271, 0.12352455940255314, 0.37801756635035544, 0.2824056214573083, > - 0.6229462823245029, 0.7235305681391472, 0.5408259266122064, 0.12142224381781208, 0.34431198802873686, 0.7112823816321276, 0.6307144385115417, > - 0.8136734589018082, 0.842095618140585, 0.8602767724004784, 0.6649236853766185, 0.5184782829419623, 0.9119607270982825, 0.3084111974561645, > - 0.39460705638161364, 0.17710447526170836, 0.1715485945814199, 0.17277563576521882, 0.40188232428735704, 0.22847985411491878, 0.4135361701550696, > - 0.24621846601980057, 0.6576588108454774, 0.6063336087333997, 0.6452342242996931, 0.7071689702737508, 0.1973416063225648 > - }; > - float expected_output[] = { > - 0.75964886, 0.6794307, 0.23580676, 0.5810112, 0.5509369, 0.55973274, 0.5764512, 0.45414522, 0.6601476, 0.52050734, 0.44385415, > - 0.50631666, 0.38414115, 0.5170288, 0.544043, 0.61143976, 0.5419003, 0.5579729, 0.5680455, 0.6363218, 0.4655096, 0.51198983, > - 0.5270792, 0.66168886, 0.48517057, 0.3513146, 0.7103355, 0.48667657, 0.34504217, 0.7318065, 0.5221889, 0.4746775, 0.69765306, > - 0.78766406, 0.34437215, 0.6130092, 0.48132777, 0.7110491, 0.6464378, 0.40914366, 0.4391975, 0.5392131, 0.45033398, 0.37297475, > - 0.43326652, 0.4748823, 0.48711336, 0.64649844, 0.51921225, 0.60038865, 0.8538945, 0.7215426, 0.60399896, 0.89988345, 0.707405, > - 0.5652921, 0.54241943, 0.41785273, 0.30268195, 0.3263432, 0.3313644, 0.37539417, 0.35238582, 0.34811732, 0.48849532, 0.56799453, > - 0.41089734, 0.63070333, 0.5892633, 0.6379743, 0.7604212, 0.5197186, 0.88611877, 0.48666745, 0.45654267, 0.5445326, 0.2399799, > - 0.28369135, 0.28949338, 0.20001422, 0.2931559, 0.3240504, 0.44306934, 0.5099349, 0.44572634, 0.68241394, 0.40183762, 0.6452342, > - 0.707169, 0.1973416 > - }; > - float *output; > - > - params.strides = 1; > - params.kernel_size = 2; > - params.padding_method = SAME; > - > - operands[0].data = input; > - operands[0].dims[0] = 1; > - operands[0].dims[1] = 5; > - operands[0].dims[2] = 6; > - operands[0].dims[3] = 3; > - operands[1].data = NULL; > - > - input_indexes[0] = 0; > - ff_dnn_execute_layer_avg_pool(operands, input_indexes, 1, ¶ms, NULL); > - > - output = operands[1].data; > - for (int i = 0; i < sizeof(expected_output) / sizeof(float); ++i) { > - if (fabs(output[i] - expected_output[i]) > EPSON) { > - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); > - av_freep(&output); > - return 1; > - } > - } > - > - av_freep(&output); > - return 0; > -} > - > -static int test_with_valid(void) > -{ > - // the input data and expected data are generated with below python code. > - /* > - import tensorflow as tf > - import numpy as np > - > - x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) > - y = tf.layers.average_pooling2d(x, pool_size=[2,2], strides=[1,1], padding='VALID') > - data = np.random.rand(1, 5, 6, 3); > - > - sess=tf.Session() > - sess.run(tf.global_variables_initializer()) > - > - output = sess.run(y, feed_dict={x: data}) > - > - print("input:") > - print(data.shape) > - print(list(data.flatten())) > - > - print("output:") > - print(output.shape) > - print(list(output.flatten())) > - */ > - > - AvgPoolParams params; > - DnnOperand operands[2]; > - int32_t input_indexes[1]; > - float input[1*5*6*3] = { > - 0.5046741692941682, 0.9273653202485155, 0.8193878359859937, 0.1904059431360905, 0.8664919633253656, 0.7484625128286059, 0.984534184632278, > - 0.31900804890072254, 0.3259426099940872, 0.05388974903570376, 0.7356610151331133, 0.46710858713311965, 0.718553768817036, 0.062478421853278676, > - 0.7813224786584609, 0.4826837517658389, 0.9748095400220147, 0.8078547703898341, 0.11976750668368585, 0.8713586777195065, 0.41447321551284355, > - 0.9818788239089807, 0.4335715767584073, 0.4059793452147419, 0.3677205907204525, 0.47919995923571, 0.8341395256258882, 0.7059726374074609, > - 0.5478504551919791, 0.8622900484790175, 0.8343709722511167, 0.05089827275068537, 0.6465283980840416, 0.544539116066677, 0.39812057257884337, > - 0.9578115576866337, 0.25012888117580145, 0.579333516024662, 0.5556732133051457, 0.6119862111181243, 0.0018736758772316398, 0.9795490254040474, > - 0.4488085008883018, 0.28947489777011737, 0.4834108668633247, 0.9280490084385024, 0.9895821458049648, 0.31777618554697606, 0.42679693258977847, > - 0.74447844466923, 0.9752225305081498, 0.17564130841849335, 0.22382692067314292, 0.009602884447469373, 0.5144884415025782, 0.031622570708844555, > - 0.8277532752502512, 0.4111593210409763, 0.5272084646575664, 0.28856508082905297, 0.11317726946036655, 0.7203328275540273, 0.8310055019972384, > - 0.8535951508685228, 0.40230347305233227, 0.2819703265132867, 0.6243143957791139, 0.7512463693822311, 0.7523056340495644, 0.8838077258040928, > - 0.5472240664033092, 0.2550538284454935, 0.5560317774456567, 0.8966847087518931, 0.6728358284165321, 0.30361297147530875, 0.464343925441822, > - 0.34507695659461224, 0.6333175615390685, 0.26661369038523497, 0.9926748632253231, 0.9994267301382666, 0.8684917986974414, 0.3598754806113009, > - 0.49550268625464666, 0.03652458679973214, 0.13469081713137177, 0.4579424049273835, 0.48641107969110353, 0.9670250266945365 > - }; > - float expected_output[1*4*5*3] = { > - 0.44918162, 0.7746969, 0.5970757, 0.63113487, 0.5245679, 0.578631, 0.52802926, 0.52042985, 0.6223702, 0.57819676, 0.34922206, > - 0.6893124, 0.64503694, 0.37157673, 0.7983793, 0.49094033, 0.47153437, 0.5889187, 0.6025985, 0.30103004, 0.6757697, 0.6126377, > - 0.5765268, 0.62440413, 0.7237974, 0.5832023, 0.7004543, 0.49533707, 0.35433105, 0.6472913, 0.44694072, 0.28500956, 0.6628852, > - 0.39628282, 0.38472247, 0.6456326, 0.58590746, 0.60042334, 0.47854072, 0.7081889, 0.7219026, 0.5818187, 0.5276401, 0.56669396, > - 0.49804622, 0.4463231, 0.4799649, 0.5335578, 0.36531678, 0.4946247, 0.6143306, 0.6498792, 0.5644355, 0.6163815, 0.7432098, > - 0.5146416, 0.38221055, 0.6153918, 0.45535153, 0.5272688 > - }; > - float *output; > - > - params.strides = 1; > - params.kernel_size = 2; > - params.padding_method = VALID; > - > - operands[0].data = input; > - operands[0].dims[0] = 1; > - operands[0].dims[1] = 5; > - operands[0].dims[2] = 6; > - operands[0].dims[3] = 3; > - operands[1].data = NULL; > - > - input_indexes[0] = 0; > - ff_dnn_execute_layer_avg_pool(operands, input_indexes, 1, ¶ms, NULL); > - > - output = operands[1].data; > - for (int i = 0; i < sizeof(expected_output) / sizeof(float); ++i) { > - if (fabs(output[i] - expected_output[i]) > EPSON) { > - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); > - av_freep(&output); > - return 1; > - } > - } > - > - av_freep(&output); > - return 0; > -} > - > -int main(int argc, char **argv) > -{ > - if (test_with_same()) > - return 1; > - if (test_with_valid()) > - return 1; > - > - return 0; > -} > diff --git a/libavfilter/tests/dnn-layer-conv2d.c b/libavfilter/tests/dnn-layer-conv2d.c > deleted file mode 100644 > index 5ee60eeaf0..0000000000 > --- a/libavfilter/tests/dnn-layer-conv2d.c > +++ /dev/null > @@ -1,248 +0,0 @@ > -/* > - * Copyright (c) 2019 Guo Yejun > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -#include > -#include > -#include > -#include "libavfilter/dnn/dnn_backend_native_layer_conv2d.h" > - > -#define EPSON 0.00001 > - > -static int test_with_same_dilate(void) > -{ > - // the input data and expected data are generated with below python code. > - /* > - x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) > - y = tf.layers.conv2d(x, 2, 3, activation=tf.nn.tanh, padding='same', dilation_rate=(2, 2), bias_initializer=tf.keras.initializers.he_normal()) > - data = np.random.rand(1, 5, 6, 3); > - > - sess=tf.Session() > - sess.run(tf.global_variables_initializer()) > - > - weights = dict([(var.name, sess.run(var)) for var in tf.trainable_variables()]) > - kernel = weights['conv2d/kernel:0'] > - kernel = np.transpose(kernel, [3, 0, 1, 2]) > - print("kernel:") > - print(kernel.shape) > - print(list(kernel.flatten())) > - > - bias = weights['conv2d/bias:0'] > - print("bias:") > - print(bias.shape) > - print(list(bias.flatten())) > - > - output = sess.run(y, feed_dict={x: data}) > - > - print("input:") > - print(data.shape) > - print(list(data.flatten())) > - > - print("output:") > - print(output.shape) > - print(list(output.flatten())) > - */ > - > - ConvolutionalParams params; > - DnnOperand operands[2]; > - int32_t input_indexes[1]; > - float input[1*5*6*3] = { > - 0.7012556460308194, 0.4233847954643357, 0.19515900664313612, 0.16343083004926495, 0.5758261611052848, 0.9510767434014871, 0.11014085055947687, > - 0.906327053637727, 0.8136794715542507, 0.45371764543639526, 0.5768443343523952, 0.19543668786046986, 0.15648326047898609, 0.2099500241141279, > - 0.17658777090552413, 0.059335724777169196, 0.1729991838469117, 0.8150514704819208, 0.4435535466703049, 0.3752188477566878, 0.749936650421431, > - 0.6823494635284907, 0.10776389679424747, 0.34247481674596836, 0.5147867256244629, 0.9063709728129032, 0.12423605800856818, 0.6064872945412728, > - 0.5891681538551459, 0.9865836236466314, 0.9002163879294677, 0.003968273184274618, 0.8628374809643967, 0.1327176268279583, 0.8449799925703798, > - 0.1937671869354366, 0.41524410152707425, 0.02038786604756837, 0.49792466069597496, 0.8881874553848784, 0.9683921035597336, 0.4122972568010813, > - 0.843553550993252, 0.9588482762501964, 0.5190350762645546, 0.4283584264145317, 0.09781496073714646, 0.9501058833776156, 0.8665541760152776, > - 0.31669272550095806, 0.07133074675453632, 0.606438007334886, 0.7007157020538224, 0.4827996264130444, 0.5167615606392761, 0.6385043039312651, > - 0.23069664707810555, 0.058233497329354456, 0.06323892961591071, 0.24816458893245974, 0.8646369065257812, 0.24742185893094837, 0.09991225948167437, > - 0.625700606979606, 0.7678541502111257, 0.6215834594679912, 0.5623003956582483, 0.07389123942681242, 0.7659100715711249, 0.486061471642225, > - 0.9947455699829012, 0.9094911797643259, 0.7644355876253265, 0.05384315321492239, 0.13565394382783613, 0.9810628204953316, 0.007386389078887889, > - 0.226182754156241, 0.2609021390764772, 0.24182802076928933, 0.13264782451941648, 0.2035816485767682, 0.005504188177612557, 0.7014619934040155, > - 0.956215988391991, 0.5670398541013633, 0.9809764721750784, 0.6886338100487461, 0.5758152317218274, 0.7137823176776179 > - }; > - float expected_output[1*5*6*2] = { > - -0.9480655, -0.7169147, -0.9404794, -0.5567385, -0.8991124, -0.8306558, -0.94487447, -0.8932543, -0.88238764, -0.7301602, > - -0.8974813, -0.7026703, -0.8858988, -0.53203243, -0.92881465, -0.5648504, -0.8871471, -0.7000097, -0.91754407, -0.79684794, > - -0.760465, -0.117928326, -0.88302773, -0.8975289, -0.70615053, 0.19231977, -0.8318776, -0.386184, -0.80698484, -0.8556624, > - -0.7336671, -0.6168619, -0.7658234, -0.63449603, -0.73314047, -0.87502456, -0.58158904, -0.4184259, -0.52618927, -0.13613208, > - -0.5093187, -0.21027721, -0.39455596, -0.44507834, -0.22269244, -0.73400885, -0.77655095, -0.74408925, -0.57313335, -0.15333457, > - -0.74620694, -0.34858236, -0.42586932, -0.5240488, 0.1634339, -0.2447881, -0.57927346, -0.62732303, -0.82287043, -0.8474058 > - }; > - float *output; > - float kernel[2*3*3*3] = { > - 0.26025516, 0.16536498, -0.24351254, 0.33892477, -0.34005195, 0.35202783, 0.34056443, 0.01422739, 0.13799345, 0.29489166, > - 0.2781723, 0.178585, 0.22122234, 0.044115514, 0.13134438, 0.31705368, 0.22527462, -0.021323413, 0.115134746, -0.18216397, > - -0.21197563, -0.027848959, -0.01704529, -0.12401503, -0.23415318, -0.12661739, -0.35338148, 0.20049328, -0.076153606, > - -0.23642601, -0.3125769, -0.025851756, -0.30006272, 0.050762743, 0.32003498, 0.3052225, -0.0017385483, 0.25337684, -0.25664508, > - 0.27846587, -0.3112659, 0.2066065, 0.31499845, 0.113178134, 0.09449363, -0.11828774, -0.12671001, -0.36259216, 0.2710235, > - -0.19676702, 0.023612618, -0.2596915, -0.34949252, -0.108270735 > - }; > - float bias[2] = { -1.6574852, -0.72915393 }; > - > - NativeContext ctx; > - ctx.class = NULL; > - ctx.options.conv2d_threads = 1; > - > - params.activation = TANH; > - params.has_bias = 1; > - params.biases = bias; > - params.dilation = 2; > - params.input_num = 3; > - params.kernel = kernel; > - params.kernel_size = 3; > - params.output_num = 2; > - params.padding_method = SAME; > - > - operands[0].data = input; > - operands[0].dims[0] = 1; > - operands[0].dims[1] = 5; > - operands[0].dims[2] = 6; > - operands[0].dims[3] = 3; > - operands[1].data = NULL; > - > - input_indexes[0] = 0; > - ff_dnn_execute_layer_conv2d(operands, input_indexes, 1, ¶ms, &ctx); > - > - output = operands[1].data; > - for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { > - if (fabs(output[i] - expected_output[i]) > EPSON) { > - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); > - av_freep(&output); > - return 1; > - } > - } > - > - av_freep(&output); > - return 0; > -} > - > -static int test_with_valid(void) > -{ > - // the input data and expected data are generated with below python code. > - /* > - x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) > - y = tf.layers.conv2d(x, 2, 3, activation=tf.nn.tanh, padding='valid', bias_initializer=tf.keras.initializers.he_normal()) > - data = np.random.rand(1, 5, 6, 3); > - > - sess=tf.Session() > - sess.run(tf.global_variables_initializer()) > - > - weights = dict([(var.name, sess.run(var)) for var in tf.trainable_variables()]) > - kernel = weights['conv2d/kernel:0'] > - kernel = np.transpose(kernel, [3, 0, 1, 2]) > - print("kernel:") > - print(kernel.shape) > - print(list(kernel.flatten())) > - > - bias = weights['conv2d/bias:0'] > - print("bias:") > - print(bias.shape) > - print(list(bias.flatten())) > - > - output = sess.run(y, feed_dict={x: data}) > - > - print("input:") > - print(data.shape) > - print(list(data.flatten())) > - > - print("output:") > - print(output.shape) > - print(list(output.flatten())) > - */ > - > - ConvolutionalParams params; > - DnnOperand operands[2]; > - int32_t input_indexes[1]; > - float input[1*5*6*3] = { > - 0.26126657468269665, 0.42762216215337556, 0.7466274030131497, 0.802550266787863, 0.3709323443076644, 0.5919817068197668, 0.49274512279324967, > - 0.7170132295090351, 0.0911793215410649, 0.5134213878288361, 0.670132600785118, 0.49417034512633484, 0.03887389460089885, 0.436785102836845, > - 0.1490231658611978, 0.6413606121498127, 0.8595987991375995, 0.9132593077586231, 0.7075959004873255, 0.17754995944845464, 0.5212507214937141, > - 0.35379732738215475, 0.25205107358505296, 0.3928792840544273, 0.09485294189485782, 0.8685115437448666, 0.6489046799288605, 0.509253797582924, > - 0.8993255536791972, 0.18740056466602373, 0.34237617336313986, 0.3871438962989183, 0.1488532571774911, 0.5187002331293636, 0.8137098818752955, > - 0.521761863717401, 0.4622312310118274, 0.29038411334638825, 0.16194915718170566, 0.5175999923925211, 0.8852230040101133, 0.0218263385047206, > - 0.08482355352852367, 0.3463638568376264, 0.28627127120619733, 0.9553293378948409, 0.4803391055970835, 0.841635695030805, 0.3556828280031952, > - 0.06778527221541808, 0.28193560357091596, 0.8399957619031576, 0.03305536359456385, 0.6625039162109645, 0.9300552020023897, 0.8551529138204146, > - 0.6133216915522418, 0.222427800857393, 0.1315422686800336, 0.6189144989185527, 0.5346184916866876, 0.8348888624532548, 0.6544834567840291, > - 0.2844062293389934, 0.28780026600883324, 0.5372272015684924, 0.6250226011503823, 0.28119106062279453, 0.49655812908420094, 0.6451488959145951, > - 0.7362580606834843, 0.44815578616664087, 0.6454760235835586, 0.6794062414265861, 0.045378883014935756, 0.9008388543865096, 0.7949752851269782, > - 0.4179928876222264, 0.28733419007048644, 0.996902319501908, 0.5690851338677467, 0.9511814013279738, 0.025323788678181636, 0.5594359732604794, > - 0.1213732595086251, 0.7172624313368294, 0.6759328959074691, 0.07252138454885071, 0.17557735158403442, 0.5988895455048769 > - }; > - float expected_output[1*3*4*2] = { > - -0.556947, -0.42143887, -0.092070885, 0.27404794, -0.41886684, 0.0862887, -0.25001016, -0.342721, 0.020730592, 0.04016919, -0.69839877, > - -0.06136704, 0.14186388, -0.11655602, -0.23489095, -0.3845829, -0.19017771, 0.1595885, -0.18308741, -0.3071209, -0.5848686, -0.22509028, > - -0.6023201, -0.14448485 > - }; > - float *output; > - float kernel[2*3*3*3] = { > - -0.25291282, 0.22402048, 0.028642118, -0.14615723, -0.27362752, -0.34801802, -0.2759148, 0.19594926, -0.25029412, 0.34606284, 0.10376671, > - -0.1015394, 0.23616093, 0.2134214, 0.35285157, 0.05893758, 0.0024731457, -0.17143056, 0.35758412, 0.2186206, -0.28384736, -0.21206513, > - -0.20871592, 0.27070445, 0.25878823, 0.11136332, -0.33737376, 0.08353335, -0.34290665, 0.041805506, -0.09738535, 0.3284936, -0.16838405, > - -0.032494456, -0.29193437, 0.033259362, -0.09272635, -0.2802651, -0.28648436, 0.3542878, 0.2432127, -0.24551713, 0.27813476, 0.21024024, > - -0.013690501, -0.1350077, -0.07826337, -0.34563828, 0.3220685, -0.07571727, 0.19420576, 0.20783454, 0.18738335, 0.16672492 > - }; > - float bias[2] = { -0.4773722, -0.19620377 }; > - > - NativeContext ctx; > - ctx.class = NULL; > - ctx.options.conv2d_threads = 1; > - > - params.activation = TANH; > - params.has_bias = 1; > - params.biases = bias; > - params.dilation = 1; > - params.input_num = 3; > - params.kernel = kernel; > - params.kernel_size = 3; > - params.output_num = 2; > - params.padding_method = VALID; > - > - operands[0].data = input; > - operands[0].dims[0] = 1; > - operands[0].dims[1] = 5; > - operands[0].dims[2] = 6; > - operands[0].dims[3] = 3; > - operands[1].data = NULL; > - > - input_indexes[0] = 0; > - ff_dnn_execute_layer_conv2d(operands, input_indexes, 1, ¶ms, &ctx); > - > - output = operands[1].data; > - for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { > - if (fabs(output[i] - expected_output[i]) > EPSON) { > - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); > - av_freep(&output); > - return 1; > - } > - } > - > - av_freep(&output); > - return 0; > -} > - > -int main(int argc, char **argv) > -{ > - if (test_with_valid()) > - return 1; > - if (test_with_same_dilate()) > - return 1; > - > - return 0; > -} > diff --git a/libavfilter/tests/dnn-layer-dense.c b/libavfilter/tests/dnn-layer-dense.c > deleted file mode 100644 > index 696f7505e5..0000000000 > --- a/libavfilter/tests/dnn-layer-dense.c > +++ /dev/null > @@ -1,131 +0,0 @@ > -/* > - * Copyright (c) 2020 > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -#include > -#include > -#include > -#include "libavfilter/dnn/dnn_backend_native_layer_dense.h" > - > -#define EPSON 0.00001 > - > -static int test(void) > -{ > - // the input data and expected data are generated with below python code. > - /* > - x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) > - y = tf.layers.dense(input_x, 3, activation=tf.nn.sigmoid, bias_initializer=tf.keras.initializers.he_normal()) > - data = np.random.rand(1, 5, 6, 3); > - > - sess=tf.Session() > - sess.run(tf.global_variables_initializer()) > - > - weights = dict([(var.name, sess.run(var)) for var in tf.trainable_variables()]) > - kernel = weights['dense/kernel:0'] > - kernel = np.transpose(kernel, [1, 0]) > - print("kernel:") > - print(kernel.shape) > - print(list(kernel.flatten())) > - > - bias = weights['dense/bias:0'] > - print("bias:") > - print(bias.shape) > - print(list(bias.flatten())) > - > - output = sess.run(y, feed_dict={x: data}) > - > - print("input:") > - print(data.shape) > - print(list(data.flatten())) > - > - print("output:") > - print(output.shape) > - print(list(output.flatten())) > - */ > - > - DenseParams params; > - DnnOperand operands[2]; > - int32_t input_indexes[1]; > - float input[1*5*6*3] = { > - 0.5552418686576308, 0.20653189262022464, 0.31115120939398877, 0.5897014433221428, 0.37340078861060655, 0.6470921693941893, 0.8039950367872679, 0.8762700891949274, > - 0.6556655583829558, 0.5911096107039339, 0.18640250865290997, 0.2803248779238966, 0.31586613136402053, 0.9447300740056483, 0.9443980824873418, 0.8158851991115941, > - 0.5631010340387631, 0.9407402251929046, 0.6485434876551682, 0.5631376966470001, 0.17581924875609634, 0.7033802439103178, 0.04802402495561675, 0.9183681450194972, > - 0.46059317944364, 0.07964160481596883, 0.871787076270302, 0.973743142324361, 0.15923146943258415, 0.8212946080584571, 0.5415954459227064, 0.9552813822803975, > - 0.4908552668172057, 0.33723691635292274, 0.46588057864910026, 0.8994239961321776, 0.09845220457674186, 0.1713400292123486, 0.39570294912818826, 0.08018956486392803, > - 0.5290478278169032, 0.7141906125920976, 0.0320878067840098, 0.6412406575332606, 0.0075712007102423096, 0.7150828462386156, 0.1311989216968138, 0.4706847944253756, > - 0.5447610794883336, 0.3430923933318001, 0.536082357943209, 0.4371629342483694, 0.40227962985019927, 0.3553806249465469, 0.031806622424259245, 0.7053916426174, > - 0.3261570237309813, 0.419500213292063, 0.3155691223480851, 0.05664028113178088, 0.3636491555914486, 0.8502419746667123, 0.9836596530684955, 0.1628681802975801, > - 0.09410832912479894, 0.28407218939480294, 0.7983417928813697, 0.24132158596506748, 0.8154729498062224, 0.29173768373895637, 0.13407102008052096, 0.18705786678800385, > - 0.7167943621295573, 0.09222004247174376, 0.2319220738766018, 0.17708964382285064, 0.1391440370249517, 0.3254088083499256, 0.4013916894718289, 0.4819742663322323, > - 0.15080103744648077, 0.9302407847555013, 0.9397597961319524, 0.5719200825550793, 0.9538938024682824, 0.9583882089203861, 0.5168861091262276, 0.1926396841842669, > - 0.6781176744337578, 0.719366447288566 > - }; > - float expected_output[1*5*6*3] = { > - -0.3921688, -0.9243112, -0.29659146, -0.64000785, -0.9466343, -0.62125254, -0.71759033, -0.9171336, -0.735589, -0.34365994, > - -0.92100817, -0.23903961, -0.8962277, -0.9521279, -0.90962386, -0.7488303, -0.9563761, -0.7701762, -0.40800542, -0.87684774, > - -0.3339763, -0.6354543, -0.97068924, -0.6246325, -0.6992075, -0.9706726, -0.6818918, -0.51864433, -0.9592881, -0.51187396, > - -0.7423632, -0.89911884, -0.7457824, -0.82009757, -0.96402895, -0.8235518, -0.61980766, -0.94494647, -0.5410502, -0.8281218, > - -0.95508635, -0.8201453, -0.5937325, -0.8679507, -0.500767, -0.39430764, -0.93967676, -0.32183182, -0.58913624, -0.939717, > - -0.55179894, -0.55004454, -0.9214453, -0.4889004, -0.75294703, -0.9118363, -0.7200309, -0.3248641, -0.8878874, -0.18977344, > - -0.8873837, -0.9571257, -0.90145934, -0.50521654, -0.93739635, -0.39051685, -0.61143184, -0.9591179, -0.605999, -0.40008977, > - -0.92219675, -0.26732883, -0.19607787, -0.9172511, -0.07068595, -0.5409857, -0.9387041, -0.44181606, -0.4705004, -0.8899935, > - -0.37997037, -0.66105115, -0.89754754, -0.68141997, -0.6324047, -0.886776, -0.65066385, -0.8334821, -0.94801456, -0.83297 > - }; > - float *output; > - float kernel[3*3] = { > - 0.56611896, -0.5144603, -0.82600045, 0.19219112, 0.3835776, -0.7475352, 0.5209291, -0.6301091, -0.99442935}; > - float bias[3] = {-0.3654299, -1.5711838, -0.15546428}; > - > - params.activation = TANH; > - params.has_bias = 1; > - params.biases = bias; > - params.input_num = 3; > - params.kernel = kernel; > - params.output_num = 3; > - > - operands[0].data = input; > - operands[0].dims[0] = 1; > - operands[0].dims[1] = 5; > - operands[0].dims[2] = 6; > - operands[0].dims[3] = 3; > - operands[1].data = NULL; > - > - input_indexes[0] = 0; > - ff_dnn_execute_layer_dense(operands, input_indexes, 1, ¶ms, NULL); > - > - output = operands[1].data; > - for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { > - if (fabs(output[i] - expected_output[i]) > EPSON) { > - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); > - av_freep(&output); > - return 1; > - } > - } > - > - av_freep(&output); > - return 0; > -} > - > -int main(int argc, char **argv) > -{ > - if (test()) > - return 1; > - > - return 0; > -} > diff --git a/libavfilter/tests/dnn-layer-depth2space.c b/libavfilter/tests/dnn-layer-depth2space.c > deleted file mode 100644 > index 958247e675..0000000000 > --- a/libavfilter/tests/dnn-layer-depth2space.c > +++ /dev/null > @@ -1,102 +0,0 @@ > -/* > - * Copyright (c) 2019 Guo Yejun > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -#include > -#include > -#include > -#include "libavfilter/dnn/dnn_backend_native.h" > -#include "libavfilter/dnn/dnn_backend_native_layer_depth2space.h" > - > -#define EPSON 0.00001 > - > -static int test(void) > -{ > - // the input data and expected data are generated with below python code. > - /* > - x = tf.placeholder(tf.float32, shape=[1, None, None, 4]) > - y = tf.depth_to_space(x, 2) > - data = np.random.rand(1, 5, 3, 4); > - > - sess=tf.Session() > - sess.run(tf.global_variables_initializer()) > - > - output = sess.run(y, feed_dict={x: data}) > - > - print("input:") > - print(data.shape) > - print(list(data.flatten())) > - > - print("output:") > - print(output.shape) > - print(list(output.flatten())) > - */ > - > - DepthToSpaceParams params; > - DnnOperand operands[2]; > - int32_t input_indexes[1]; > - float input[1*5*3*4] = { > - 0.09771065121566602, 0.6336807372403175, 0.5142416549709786, 0.8027206567330333, 0.2154276025069397, 0.12112878462616772, 0.913936596765778, > - 0.38881443647542646, 0.5850447615898835, 0.9311499327398275, 0.3613660929428246, 0.5420722002125493, 0.6002131190230359, 0.44800665702299525, > - 0.7271322557896777, 0.3869293511885826, 0.5144404769364138, 0.6910844856987723, 0.6142102742269762, 0.6249991371621018, 0.45663376215836626, > - 0.19523477129943423, 0.2483895888532045, 0.64326768256278, 0.5485877602998981, 0.45442067849873546, 0.529374943304256, 0.30439850391811885, > - 0.11961343361340993, 0.2909643484561082, 0.9810970344127848, 0.8886928489786549, 0.6112237084436409, 0.8852482695156674, 0.9110868043114374, > - 0.21242780027585217, 0.7101536973207572, 0.9709717457443375, 0.2702666770969332, 0.7718295953780221, 0.3957005164588574, 0.24383544252475453, > - 0.040143453532367035, 0.26358051835323115, 0.013130251443791319, 0.3016550481482074, 0.03582340459943956, 0.718025513612361, 0.09844204177633753, > - 0.04433767496953056, 0.6221895044119757, 0.6190414032940228, 0.8963550834625371, 0.5642449700064629, 0.2482982014723497, 0.17824909294583013, > - 0.024401882408643272, 0.21742800875253465, 0.6794724473181843, 0.4814830479242237 > - }; > - float expected_output[1*10*6*1] = { > - 0.097710654, 0.63368076, 0.2154276, 0.12112878, 0.58504474, 0.93114996, 0.51424164, 0.80272067, 0.9139366, 0.38881445, > - 0.3613661, 0.5420722, 0.6002131, 0.44800666, 0.5144405, 0.6910845, 0.45663378, 0.19523478, 0.72713226, 0.38692936, > - 0.61421025, 0.62499917, 0.24838959, 0.6432677, 0.54858774, 0.4544207, 0.11961343, 0.29096434, 0.6112237, 0.88524824, > - 0.52937496, 0.3043985, 0.98109704, 0.88869286, 0.9110868, 0.2124278, 0.7101537, 0.97097176, 0.3957005, 0.24383545, > - 0.013130251, 0.30165505, 0.27026668, 0.7718296, 0.040143453, 0.26358053, 0.035823405, 0.7180255, 0.09844204, > - 0.044337675, 0.8963551, 0.564245, 0.024401883, 0.21742801, 0.6221895, 0.6190414, 0.2482982, 0.17824909, 0.67947245, 0.48148304 > - }; > - float *output; > - > - operands[0].data = input; > - operands[0].dims[0] = 1; > - operands[0].dims[1] = 5; > - operands[0].dims[2] = 3; > - operands[0].dims[3] = 4; > - operands[1].data = NULL; > - > - input_indexes[0] = 0; > - params.block_size = 2; > - ff_dnn_execute_layer_depth2space(operands, input_indexes, 1, ¶ms, NULL); > - > - output = operands[1].data; > - for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { > - if (fabs(output[i] - expected_output[i]) > EPSON) { > - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); > - av_freep(&output); > - return 1; > - } > - } > - > - av_freep(&output); > - return 0; > -} > - > -int main(int argc, char **argv) > -{ > - return test(); > -} > diff --git a/libavfilter/tests/dnn-layer-mathbinary.c b/libavfilter/tests/dnn-layer-mathbinary.c > deleted file mode 100644 > index 2e41dc1ae7..0000000000 > --- a/libavfilter/tests/dnn-layer-mathbinary.c > +++ /dev/null > @@ -1,214 +0,0 @@ > -/* > - * Copyright (c) 2020 > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -#include > -#include > -#include > -#include "libavfilter/dnn/dnn_backend_native_layer_mathbinary.h" > -#include "libavutil/avassert.h" > - > -#define EPSON 0.00005 > - > -static float get_expected(float f1, float f2, DNNMathBinaryOperation op) > -{ > - switch (op) > - { > - case DMBO_SUB: > - return f1 - f2; > - case DMBO_ADD: > - return f1 + f2; > - case DMBO_MUL: > - return f1 * f2; > - case DMBO_REALDIV: > - return f1 / f2; > - case DMBO_MINIMUM: > - return (f1 < f2) ? f1 : f2; > - case DMBO_FLOORMOD: > - return (float)((int)(f1) % (int)(f2)); > - default: > - av_assert0(!"not supported yet"); > - return 0.f; > - } > -} > - > -static int test_broadcast_input0(DNNMathBinaryOperation op) > -{ > - DnnLayerMathBinaryParams params; > - DnnOperand operands[2]; > - int32_t input_indexes[1]; > - float input[1*1*2*3] = { > - -3, 2.5, 2, -2.1, 7.8, 100 > - }; > - float *output; > - > - params.bin_op = op; > - params.input0_broadcast = 1; > - params.input1_broadcast = 0; > - params.v = 7.28; > - > - operands[0].data = input; > - operands[0].dims[0] = 1; > - operands[0].dims[1] = 1; > - operands[0].dims[2] = 2; > - operands[0].dims[3] = 3; > - operands[1].data = NULL; > - > - input_indexes[0] = 0; > - ff_dnn_execute_layer_math_binary(operands, input_indexes, 1, ¶ms, NULL); > - > - output = operands[1].data; > - for (int i = 0; i < sizeof(input) / sizeof(float); i++) { > - float expected_output = get_expected(params.v, input[i], op); > - if (fabs(output[i] - expected_output) > EPSON) { > - printf("op %d, at index %d, output: %f, expected_output: %f (%s:%d)\n", > - op, i, output[i], expected_output, __FILE__, __LINE__); > - av_freep(&output); > - return 1; > - } > - } > - > - av_freep(&output); > - return 0; > -} > - > -static int test_broadcast_input1(DNNMathBinaryOperation op) > -{ > - DnnLayerMathBinaryParams params; > - DnnOperand operands[2]; > - int32_t input_indexes[1]; > - float input[1*1*2*3] = { > - -3, 2.5, 2, -2.1, 7.8, 100 > - }; > - float *output; > - > - params.bin_op = op; > - params.input0_broadcast = 0; > - params.input1_broadcast = 1; > - params.v = 7.28; > - > - operands[0].data = input; > - operands[0].dims[0] = 1; > - operands[0].dims[1] = 1; > - operands[0].dims[2] = 2; > - operands[0].dims[3] = 3; > - operands[1].data = NULL; > - > - input_indexes[0] = 0; > - ff_dnn_execute_layer_math_binary(operands, input_indexes, 1, ¶ms, NULL); > - > - output = operands[1].data; > - for (int i = 0; i < sizeof(input) / sizeof(float); i++) { > - float expected_output = get_expected(input[i], params.v, op); > - if (fabs(output[i] - expected_output) > EPSON) { > - printf("op %d, at index %d, output: %f, expected_output: %f (%s:%d)\n", > - op, i, output[i], expected_output, __FILE__, __LINE__); > - av_freep(&output); > - return 1; > - } > - } > - > - av_freep(&output); > - return 0; > -} > - > -static int test_no_broadcast(DNNMathBinaryOperation op) > -{ > - DnnLayerMathBinaryParams params; > - DnnOperand operands[3]; > - int32_t input_indexes[2]; > - float input0[1*1*2*3] = { > - -3, 2.5, 2, -2.1, 7.8, 100 > - }; > - float input1[1*1*2*3] = { > - -1, 2, 3, -21, 8, 10.0 > - }; > - float *output; > - > - params.bin_op = op; > - params.input0_broadcast = 0; > - params.input1_broadcast = 0; > - > - operands[0].data = input0; > - operands[0].dims[0] = 1; > - operands[0].dims[1] = 1; > - operands[0].dims[2] = 2; > - operands[0].dims[3] = 3; > - operands[1].data = input1; > - operands[1].dims[0] = 1; > - operands[1].dims[1] = 1; > - operands[1].dims[2] = 2; > - operands[1].dims[3] = 3; > - operands[2].data = NULL; > - > - input_indexes[0] = 0; > - input_indexes[1] = 1; > - ff_dnn_execute_layer_math_binary(operands, input_indexes, 2, ¶ms, NULL); > - > - output = operands[2].data; > - for (int i = 0; i < sizeof(input0) / sizeof(float); i++) { > - float expected_output = get_expected(input0[i], input1[i], op); > - if (fabs(output[i] - expected_output) > EPSON) { > - printf("op %d, at index %d, output: %f, expected_output: %f (%s:%d)\n", > - op, i, output[i], expected_output, __FILE__, __LINE__); > - av_freep(&output); > - return 1; > - } > - } > - > - av_freep(&output); > - return 0; > -} > - > -static int test(DNNMathBinaryOperation op) > -{ > - if (test_broadcast_input0(op)) > - return 1; > - > - if (test_broadcast_input1(op)) > - return 1; > - > - if (test_no_broadcast(op)) > - return 1; > - > - return 0; > -} > - > -int main(int argc, char **argv) > -{ > - if (test(DMBO_SUB)) > - return 1; > - > - if (test(DMBO_ADD)) > - return 1; > - > - if (test(DMBO_MUL)) > - return 1; > - > - if (test(DMBO_REALDIV)) > - return 1; > - > - if (test(DMBO_MINIMUM)) > - return 1; > - > - if (test(DMBO_FLOORMOD)) > - return 1; > - > - return 0; > -} > diff --git a/libavfilter/tests/dnn-layer-mathunary.c b/libavfilter/tests/dnn-layer-mathunary.c > deleted file mode 100644 > index 0f84c12960..0000000000 > --- a/libavfilter/tests/dnn-layer-mathunary.c > +++ /dev/null > @@ -1,148 +0,0 @@ > -/* > - * Copyright (c) 2020 > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -#include > -#include > -#include > -#include "libavfilter/dnn/dnn_backend_native_layer_mathunary.h" > -#include "libavutil/avassert.h" > - > -#define EPS 0.00001 > - > -static float get_expected(float f, DNNMathUnaryOperation op) > -{ > - switch (op) > - { > - case DMUO_ABS: > - return (f >= 0) ? f : -f; > - case DMUO_SIN: > - return sin(f); > - case DMUO_COS: > - return cos(f); > - case DMUO_TAN: > - return tan(f); > - case DMUO_ASIN: > - return asin(f); > - case DMUO_ACOS: > - return acos(f); > - case DMUO_ATAN: > - return atan(f); > - case DMUO_SINH: > - return sinh(f); > - case DMUO_COSH: > - return cosh(f); > - case DMUO_TANH: > - return tanh(f); > - case DMUO_ASINH: > - return asinh(f); > - case DMUO_ACOSH: > - return acosh(f); > - case DMUO_ATANH: > - return atanh(f); > - case DMUO_CEIL: > - return ceil(f); > - case DMUO_FLOOR: > - return floor(f); > - case DMUO_ROUND: > - return round(f); > - case DMUO_EXP: > - return exp(f); > - default: > - av_assert0(!"not supported yet"); > - return 0.f; > - } > -} > - > -static int test(DNNMathUnaryOperation op) > -{ > - DnnLayerMathUnaryParams params; > - DnnOperand operands[2]; > - int32_t input_indexes[1]; > - float input[1*1*3*3] = { > - 0.1, 0.5, 0.75, -3, 2.5, 2, -2.1, 7.8, 100}; > - float *output; > - > - params.un_op = op; > - > - operands[0].data = input; > - operands[0].dims[0] = 1; > - operands[0].dims[1] = 1; > - operands[0].dims[2] = 3; > - operands[0].dims[3] = 3; > - operands[1].data = NULL; > - > - input_indexes[0] = 0; > - ff_dnn_execute_layer_math_unary(operands, input_indexes, 1, ¶ms, NULL); > - > - output = operands[1].data; > - for (int i = 0; i < sizeof(input) / sizeof(float); ++i) { > - float expected_output = get_expected(input[i], op); > - int output_nan = isnan(output[i]); > - int expected_nan = isnan(expected_output); > - if ((!output_nan && !expected_nan && fabs(output[i] - expected_output) > EPS) || > - (output_nan && !expected_nan) || (!output_nan && expected_nan)) { > - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output); > - av_freep(&output); > - return 1; > - } > - } > - > - av_freep(&output); > - return 0; > -} > - > -int main(int agrc, char **argv) > -{ > - if (test(DMUO_ABS)) > - return 1; > - if (test(DMUO_SIN)) > - return 1; > - if (test(DMUO_COS)) > - return 1; > - if (test(DMUO_TAN)) > - return 1; > - if (test(DMUO_ASIN)) > - return 1; > - if (test(DMUO_ACOS)) > - return 1; > - if (test(DMUO_ATAN)) > - return 1; > - if (test(DMUO_SINH)) > - return 1; > - if (test(DMUO_COSH)) > - return 1; > - if (test(DMUO_TANH)) > - return 1; > - if (test(DMUO_ASINH)) > - return 1; > - if (test(DMUO_ACOSH)) > - return 1; > - if (test(DMUO_ATANH)) > - return 1; > - if (test(DMUO_CEIL)) > - return 1; > - if (test(DMUO_FLOOR)) > - return 1; > - if (test(DMUO_ROUND)) > - return 1; > - if (test(DMUO_EXP)) > - return 1; > - return 0; > -} > diff --git a/libavfilter/tests/dnn-layer-maximum.c b/libavfilter/tests/dnn-layer-maximum.c > deleted file mode 100644 > index bf22f3719f..0000000000 > --- a/libavfilter/tests/dnn-layer-maximum.c > +++ /dev/null > @@ -1,71 +0,0 @@ > -/* > - * Copyright (c) 2019 Guo Yejun > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -#include > -#include > -#include > -#include "libavfilter/dnn/dnn_backend_native_layer_maximum.h" > - > -#define EPSON 0.00001 > - > -static int test(void) > -{ > - DnnLayerMaximumParams params; > - DnnOperand operands[2]; > - int32_t input_indexes[1]; > - float input[1*1*2*3] = { > - -3, 2.5, 2, -2.1, 7.8, 100 > - }; > - float *output; > - > - params.val.y = 2.3; > - > - operands[0].data = input; > - operands[0].dims[0] = 1; > - operands[0].dims[1] = 1; > - operands[0].dims[2] = 2; > - operands[0].dims[3] = 3; > - operands[1].data = NULL; > - > - input_indexes[0] = 0; > - ff_dnn_execute_layer_maximum(operands, input_indexes, 1, ¶ms, NULL); > - > - output = operands[1].data; > - for (int i = 0; i < sizeof(input) / sizeof(float); i++) { > - float expected_output = input[i] > params.val.y ? input[i] : params.val.y; > - if (fabs(output[i] - expected_output) > EPSON) { > - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output); > - av_freep(&output); > - return 1; > - } > - } > - > - av_freep(&output); > - return 0; > - > -} > - > -int main(int argc, char **argv) > -{ > - if (test()) > - return 1; > - > - return 0; > -} > diff --git a/libavfilter/tests/dnn-layer-pad.c b/libavfilter/tests/dnn-layer-pad.c > deleted file mode 100644 > index a8443ce3be..0000000000 > --- a/libavfilter/tests/dnn-layer-pad.c > +++ /dev/null > @@ -1,239 +0,0 @@ > -/* > - * Copyright (c) 2019 Guo Yejun > - * > - * This file is part of FFmpeg. > - * > - * FFmpeg is free software; you can redistribute it and/or > - * modify it under the terms of the GNU Lesser General Public > - * License as published by the Free Software Foundation; either > - * version 2.1 of the License, or (at your option) any later version. > - * > - * FFmpeg is distributed in the hope that it will be useful, > - * but WITHOUT ANY WARRANTY; without even the implied warranty of > - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > - * Lesser General Public License for more details. > - * > - * You should have received a copy of the GNU Lesser General Public > - * License along with FFmpeg; if not, write to the Free Software > - * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA > - */ > - > -#include > -#include > -#include > -#include "libavfilter/dnn/dnn_backend_native_layer_pad.h" > - > -#define EPSON 0.00001 > - > -static int test_with_mode_symmetric(void) > -{ > - // the input data and expected data are generated with below python code. > - /* > - x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) > - y = tf.pad(x, [[0, 0], [2, 3], [3, 2], [0, 0]], 'SYMMETRIC') > - data = np.arange(48).reshape(1, 4, 4, 3); > - > - sess=tf.Session() > - sess.run(tf.global_variables_initializer()) > - output = sess.run(y, feed_dict={x: data}) > - > - print(list(data.flatten())) > - print(list(output.flatten())) > - print(data.shape) > - print(output.shape) > - */ > - > - LayerPadParams params; > - DnnOperand operands[2]; > - int32_t input_indexes[1]; > - float input[1*4*4*3] = { > - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47 > - }; > - float expected_output[1*9*9*3] = { > - 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0, 6.0, 7.0, 8.0, 3.0, > - 4.0, 5.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 9.0, 10.0, 11.0, 6.0, 7.0, 8.0, 6.0, 7.0, 8.0, 3.0, 4.0, 5.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 3.0, > - 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 9.0, 10.0, 11.0, 6.0, 7.0, 8.0, 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, > - 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0, 30.0, 31.0, 32.0, 27.0, 28.0, 29.0, 24.0, 25.0, 26.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 33.0, > - 34.0, 35.0, 30.0, 31.0, 32.0, 42.0, 43.0, 44.0, 39.0, 40.0, 41.0, 36.0, 37.0, 38.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 45.0, 46.0, 47.0, 42.0, 43.0, > - 44.0, 42.0, 43.0, 44.0, 39.0, 40.0, 41.0, 36.0, 37.0, 38.0, 36.0, 37.0, 38.0, 39.0, 40.0, 41.0, 42.0, 43.0, 44.0, 45.0, 46.0, 47.0, 45.0, 46.0, 47.0, 42.0, 43.0, 44.0, 30.0, 31.0, 32.0, > - 27.0, 28.0, 29.0, 24.0, 25.0, 26.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, 35.0, 33.0, 34.0, 35.0, 30.0, 31.0, 32.0, 18.0, 19.0, 20.0, 15.0, 16.0, 17.0, 12.0, > - 13.0, 14.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 21.0, 22.0, 23.0, 18.0, 19.0, 20.0 > - }; > - float *output; > - > - params.mode = LPMP_SYMMETRIC; > - params.paddings[0][0] = 0; > - params.paddings[0][1] = 0; > - params.paddings[1][0] = 2; > - params.paddings[1][1] = 3; > - params.paddings[2][0] = 3; > - params.paddings[2][1] = 2; > - params.paddings[3][0] = 0; > - params.paddings[3][1] = 0; > - > - operands[0].data = input; > - operands[0].dims[0] = 1; > - operands[0].dims[1] = 4; > - operands[0].dims[2] = 4; > - operands[0].dims[3] = 3; > - operands[1].data = NULL; > - > - input_indexes[0] = 0; > - ff_dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms, NULL); > - > - output = operands[1].data; > - for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { > - if (fabs(output[i] - expected_output[i]) > EPSON) { > - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); > - av_freep(&output); > - return 1; > - } > - } > - > - av_freep(&output); > - return 0; > - > -} > - > -static int test_with_mode_reflect(void) > -{ > - // the input data and expected data are generated with below python code. > - /* > - x = tf.placeholder(tf.float32, shape=[3, None, None, 3]) > - y = tf.pad(x, [[1, 2], [0, 0], [0, 0], [0, 0]], 'REFLECT') > - data = np.arange(36).reshape(3, 2, 2, 3); > - > - sess=tf.Session() > - sess.run(tf.global_variables_initializer()) > - output = sess.run(y, feed_dict={x: data}) > - > - print(list(data.flatten())) > - print(list(output.flatten())) > - print(data.shape) > - print(output.shape) > - */ > - > - LayerPadParams params; > - DnnOperand operands[2]; > - int32_t input_indexes[1]; > - float input[3*2*2*3] = { > - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35 > - }; > - float expected_output[6*2*2*3] = { > - 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, > - 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 30.0, 31.0, 32.0, 33.0, 34.0, > - 35.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0, 21.0, 22.0, 23.0, 0.0, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0 > - }; > - float *output; > - > - params.mode = LPMP_REFLECT; > - params.paddings[0][0] = 1; > - params.paddings[0][1] = 2; > - params.paddings[1][0] = 0; > - params.paddings[1][1] = 0; > - params.paddings[2][0] = 0; > - params.paddings[2][1] = 0; > - params.paddings[3][0] = 0; > - params.paddings[3][1] = 0; > - > - operands[0].data = input; > - operands[0].dims[0] = 3; > - operands[0].dims[1] = 2; > - operands[0].dims[2] = 2; > - operands[0].dims[3] = 3; > - operands[1].data = NULL; > - > - input_indexes[0] = 0; > - ff_dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms, NULL); > - > - output = operands[1].data; > - for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { > - if (fabs(output[i] - expected_output[i]) > EPSON) { > - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); > - av_freep(&output); > - return 1; > - } > - } > - > - av_freep(&output); > - return 0; > - > -} > - > -static int test_with_mode_constant(void) > -{ > - // the input data and expected data are generated with below python code. > - /* > - x = tf.placeholder(tf.float32, shape=[1, None, None, 3]) > - y = tf.pad(x, [[0, 0], [1, 0], [0, 0], [1, 2]], 'CONSTANT', constant_values=728) > - data = np.arange(12).reshape(1, 2, 2, 3); > - > - sess=tf.Session() > - sess.run(tf.global_variables_initializer()) > - output = sess.run(y, feed_dict={x: data}) > - > - print(list(data.flatten())) > - print(list(output.flatten())) > - print(data.shape) > - print(output.shape) > - */ > - > - LayerPadParams params; > - DnnOperand operands[2]; > - int32_t input_indexes[1]; > - float input[1*2*2*3] = { > - 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11 > - }; > - float expected_output[1*3*2*6] = { > - 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, 728.0, > - 728.0, 728.0, 0.0, 1.0, 2.0, 728.0, 728.0, 728.0, 3.0, 4.0, 5.0, 728.0, 728.0, > - 728.0, 6.0, 7.0, 8.0, 728.0, 728.0, 728.0, 9.0, 10.0, 11.0, 728.0, 728.0 > - }; > - float *output; > - > - params.mode = LPMP_CONSTANT; > - params.constant_values = 728; > - params.paddings[0][0] = 0; > - params.paddings[0][1] = 0; > - params.paddings[1][0] = 1; > - params.paddings[1][1] = 0; > - params.paddings[2][0] = 0; > - params.paddings[2][1] = 0; > - params.paddings[3][0] = 1; > - params.paddings[3][1] = 2; > - > - operands[0].data = input; > - operands[0].dims[0] = 1; > - operands[0].dims[1] = 2; > - operands[0].dims[2] = 2; > - operands[0].dims[3] = 3; > - operands[1].data = NULL; > - > - input_indexes[0] = 0; > - ff_dnn_execute_layer_pad(operands, input_indexes, 1, ¶ms, NULL); > - > - output = operands[1].data; > - for (int i = 0; i < sizeof(expected_output) / sizeof(float); i++) { > - if (fabs(output[i] - expected_output[i]) > EPSON) { > - printf("at index %d, output: %f, expected_output: %f\n", i, output[i], expected_output[i]); > - av_freep(&output); > - return 1; > - } > - } > - > - av_freep(&output); > - return 0; > - > -} > - > -int main(int argc, char **argv) > -{ > - if (test_with_mode_symmetric()) > - return 1; > - > - if (test_with_mode_reflect()) > - return 1; > - > - if (test_with_mode_constant()) > - return 1; > -} > diff --git a/tests/Makefile b/tests/Makefile > index 1d50e1d175..3634f77f9c 100644 > --- a/tests/Makefile > +++ b/tests/Makefile > @@ -172,7 +172,6 @@ include $(SRC_PATH)/tests/fate/cover-art.mak > include $(SRC_PATH)/tests/fate/dca.mak > include $(SRC_PATH)/tests/fate/demux.mak > include $(SRC_PATH)/tests/fate/dfa.mak > -include $(SRC_PATH)/tests/fate/dnn.mak > include $(SRC_PATH)/tests/fate/dnxhd.mak > include $(SRC_PATH)/tests/fate/dpcm.mak > include $(SRC_PATH)/tests/fate/dvvideo.mak > diff --git a/tests/fate/dnn.mak b/tests/fate/dnn.mak > deleted file mode 100644 > index a30a2976d9..0000000000 > --- a/tests/fate/dnn.mak > +++ /dev/null > @@ -1,45 +0,0 @@ > -DNNTESTSDIR := libavfilter/tests > - > -FATE_DNN += fate-dnn-layer-pad > -fate-dnn-layer-pad: $(DNNTESTSDIR)/dnn-layer-pad$(EXESUF) > -fate-dnn-layer-pad: CMD = run $(DNNTESTSDIR)/dnn-layer-pad$(EXESUF) > -fate-dnn-layer-pad: CMP = null > - > -FATE_DNN += fate-dnn-layer-conv2d > -fate-dnn-layer-conv2d: $(DNNTESTSDIR)/dnn-layer-conv2d$(EXESUF) > -fate-dnn-layer-conv2d: CMD = run $(DNNTESTSDIR)/dnn-layer-conv2d$(EXESUF) > -fate-dnn-layer-conv2d: CMP = null > - > -FATE_DNN += fate-dnn-layer-dense > -fate-dnn-layer-dense: $(DNNTESTSDIR)/dnn-layer-dense$(EXESUF) > -fate-dnn-layer-dense: CMD = run $(DNNTESTSDIR)/dnn-layer-dense$(EXESUF) > -fate-dnn-layer-dense: CMP = null > - > -FATE_DNN += fate-dnn-layer-depth2space > -fate-dnn-layer-depth2space: $(DNNTESTSDIR)/dnn-layer-depth2space$(EXESUF) > -fate-dnn-layer-depth2space: CMD = run $(DNNTESTSDIR)/dnn-layer-depth2space$(EXESUF) > -fate-dnn-layer-depth2space: CMP = null > - > -FATE_DNN += fate-dnn-layer-mathbinary > -fate-dnn-layer-mathbinary: $(DNNTESTSDIR)/dnn-layer-mathbinary$(EXESUF) > -fate-dnn-layer-mathbinary: CMD = run $(DNNTESTSDIR)/dnn-layer-mathbinary$(EXESUF) > -fate-dnn-layer-mathbinary: CMP = null > - > -FATE_DNN += fate-dnn-layer-maximum > -fate-dnn-layer-maximum: $(DNNTESTSDIR)/dnn-layer-maximum$(EXESUF) > -fate-dnn-layer-maximum: CMD = run $(DNNTESTSDIR)/dnn-layer-maximum$(EXESUF) > -fate-dnn-layer-maximum: CMP = null > - > -FATE_DNN += fate-dnn-layer-mathunary > -fate-dnn-layer-mathunary: $(DNNTESTSDIR)/dnn-layer-mathunary$(EXESUF) > -fate-dnn-layer-mathunary: CMD = run $(DNNTESTSDIR)/dnn-layer-mathunary$(EXESUF) > -fate-dnn-layer-mathunary: CMP = null > - > -FATE_DNN += fate-dnn-layer-avgpool > -fate-dnn-layer-avgpool: $(DNNTESTSDIR)/dnn-layer-avgpool$(EXESUF) > -fate-dnn-layer-avgpool: CMD = run $(DNNTESTSDIR)/dnn-layer-avgpool$(EXESUF) > -fate-dnn-layer-avgpool: CMP = null > - > -FATE-$(CONFIG_DNN) += $(FATE_DNN) > - > -fate-dnn: $(FATE_DNN) > -- > 2.17.1 > > _______________________________________________ > ffmpeg-devel mailing list > ffmpeg-devel@ffmpeg.org > https://ffmpeg.org/mailman/listinfo/ffmpeg-devel > > To unsubscribe, visit link above, or email > ffmpeg-devel-request@ffmpeg.org with subject "unsubscribe". > _______________________________________________ ffmpeg-devel mailing list ffmpeg-devel@ffmpeg.org https://ffmpeg.org/mailman/listinfo/ffmpeg-devel To unsubscribe, visit link above, or email ffmpeg-devel-request@ffmpeg.org with subject "unsubscribe".