From: "Jean-Baptiste Kempf" <jb@videolan.org> To: ffmpeg-devel <ffmpeg-devel@ffmpeg.org> Subject: Re: [FFmpeg-devel] [PATCH v3] libavfi/dnn: add LibTorch as one of DNN backend Date: Wed, 21 Feb 2024 02:44:11 +0100 Message-ID: <a402d9ef-be22-41e2-96eb-84b53101d1e7@betaapp.fastmail.com> (raw) In-Reply-To: <20240220044824.1439205-1-wenbin.chen@intel.com> Hello, On Tue, 20 Feb 2024, at 05:48, wenbin.chen-at-intel.com@ffmpeg.org wrote: > From: Wenbin Chen <wenbin.chen@intel.com> > > PyTorch is an open source machine learning framework that accelerates OK for me > the path from research prototyping to production deployment. Official > websit: https://pytorch.org/. We call the C++ library of PyTorch as websitE > LibTorch, the same below. > > To build FFmpeg with LibTorch, please take following steps as reference: > 1. download LibTorch C++ library in > https://pytorch.org/get-started/locally/, > please select C++/Java for language, and other options as your need. > 2. unzip the file to your own dir, with command > unzip libtorch-shared-with-deps-latest.zip -d your_dir > 3. export libtorch_root/libtorch/include and > libtorch_root/libtorch/include/torch/csrc/api/include to $PATH > export libtorch_root/libtorch/lib/ to $LD_LIBRARY_PATH > 4. config FFmpeg with ../configure --enable-libtorch > --extra-cflag=-I/libtorch_root/libtorch/include > --extra-cflag=-I/libtorch_root/libtorch/include/torch/csrc/api/include > --extra-ldflags=-L/libtorch_root/libtorch/lib/ > 5. make > > To run FFmpeg DNN inference with LibTorch backend: > ./ffmpeg -i input.jpg -vf > dnn_processing=dnn_backend=torch:model=LibTorch_model.pt -y output.jpg > The LibTorch_model.pt can be generated by Python with > torch.jit.script() api. Please note, torch.jit.trace() is not > recommanded, since it does not support ambiguous input size. > > Signed-off-by: Ting Fu <ting.fu@intel.com> > Signed-off-by: Wenbin Chen <wenbin.chen@intel.com> > --- > configure | 5 +- > libavfilter/dnn/Makefile | 1 + > libavfilter/dnn/dnn_backend_torch.cpp | 597 ++++++++++++++++++++++++++ > libavfilter/dnn/dnn_interface.c | 5 + > libavfilter/dnn_filter_common.c | 15 +- > libavfilter/dnn_interface.h | 2 +- > libavfilter/vf_dnn_processing.c | 3 + > 7 files changed, 624 insertions(+), 4 deletions(-) > create mode 100644 libavfilter/dnn/dnn_backend_torch.cpp > > diff --git a/configure b/configure > index 2c635043dd..450ef54a80 100755 > --- a/configure > +++ b/configure > @@ -279,6 +279,7 @@ External library support: > --enable-libtheora enable Theora encoding via libtheora [no] > --enable-libtls enable LibreSSL (via libtls), needed for > https support > if openssl, gnutls or mbedtls is not used > [no] > + --enable-libtorch enable Torch as one DNN backend [no] > --enable-libtwolame enable MP2 encoding via libtwolame [no] > --enable-libuavs3d enable AVS3 decoding via libuavs3d [no] > --enable-libv4l2 enable libv4l2/v4l-utils [no] > @@ -1901,6 +1902,7 @@ EXTERNAL_LIBRARY_LIST=" > libtensorflow > libtesseract > libtheora > + libtorch > libtwolame > libuavs3d > libv4l2 > @@ -2781,7 +2783,7 @@ cbs_vp9_select="cbs" > deflate_wrapper_deps="zlib" > dirac_parse_select="golomb" > dovi_rpu_select="golomb" > -dnn_suggest="libtensorflow libopenvino" > +dnn_suggest="libtensorflow libopenvino libtorch" > dnn_deps="avformat swscale" > error_resilience_select="me_cmp" > evcparse_select="golomb" > @@ -6886,6 +6888,7 @@ enabled libtensorflow && require > libtensorflow tensorflow/c/c_api.h TF_Versi > enabled libtesseract && require_pkg_config libtesseract tesseract > tesseract/capi.h TessBaseAPICreate > enabled libtheora && require libtheora theora/theoraenc.h > th_info_init -ltheoraenc -ltheoradec -logg > enabled libtls && require_pkg_config libtls libtls tls.h > tls_configure > +enabled libtorch && check_cxxflags -std=c++14 && require_cpp > libtorch torch/torch.h "torch::Tensor" -ltorch -lc10 -ltorch_cpu > -lstdc++ -lpthread > enabled libtwolame && require libtwolame twolame.h twolame_init > -ltwolame && > { check_lib libtwolame twolame.h > twolame_encode_buffer_float32_interleaved -ltwolame || > die "ERROR: libtwolame must be > installed and version must be >= 0.3.10"; } > diff --git a/libavfilter/dnn/Makefile b/libavfilter/dnn/Makefile > index 5d5697ea42..3d09927c98 100644 > --- a/libavfilter/dnn/Makefile > +++ b/libavfilter/dnn/Makefile > @@ -6,5 +6,6 @@ OBJS-$(CONFIG_DNN) += > dnn/dnn_backend_common.o > > DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o > DNN-OBJS-$(CONFIG_LIBOPENVINO) += dnn/dnn_backend_openvino.o > +DNN-OBJS-$(CONFIG_LIBTORCH) += dnn/dnn_backend_torch.o > > OBJS-$(CONFIG_DNN) += $(DNN-OBJS-yes) > diff --git a/libavfilter/dnn/dnn_backend_torch.cpp > b/libavfilter/dnn/dnn_backend_torch.cpp > new file mode 100644 > index 0000000000..54d3b309a1 > --- /dev/null > +++ b/libavfilter/dnn/dnn_backend_torch.cpp > @@ -0,0 +1,597 @@ > +/* > + * Copyright (c) 2024 > + * > + * This file is part of FFmpeg. > + * > + * FFmpeg is free software; you can redistribute it and/or > + * modify it under the terms of the GNU Lesser General Public > + * License as published by the Free Software Foundation; either > + * version 2.1 of the License, or (at your option) any later version. > + * > + * FFmpeg is distributed in the hope that it will be useful, > + * but WITHOUT ANY WARRANTY; without even the implied warranty of > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU > + * Lesser General Public License for more details. > + * > + * You should have received a copy of the GNU Lesser General Public > + * License along with FFmpeg; if not, write to the Free Software > + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA > 02110-1301 USA > + */ > + > +/** > + * @file > + * DNN Torch backend implementation. > + */ > + > +#include <torch/torch.h> > +#include <torch/script.h> > + > +extern "C" { > +#include "../internal.h" > +#include "dnn_io_proc.h" > +#include "dnn_backend_common.h" > +#include "libavutil/opt.h" > +#include "queue.h" > +#include "safe_queue.h" > +} > + > +typedef struct THOptions{ > + char *device_name; > + int optimize; > +} THOptions; > + > +typedef struct THContext { > + const AVClass *c_class; > + THOptions options; > +} THContext; > + > +typedef struct THModel { > + THContext ctx; > + DNNModel *model; > + torch::jit::Module *jit_model; > + SafeQueue *request_queue; > + Queue *task_queue; > + Queue *lltask_queue; > +} THModel; > + > +typedef struct THInferRequest { > + torch::Tensor *output; > + torch::Tensor *input_tensor; > +} THInferRequest; > + > +typedef struct THRequestItem { > + THInferRequest *infer_request; > + LastLevelTaskItem *lltask; > + DNNAsyncExecModule exec_module; > +} THRequestItem; > + > + > +#define OFFSET(x) offsetof(THContext, x) > +#define FLAGS AV_OPT_FLAG_FILTERING_PARAM > +static const AVOption dnn_th_options[] = { > + { "device", "device to run model", OFFSET(options.device_name), > AV_OPT_TYPE_STRING, { .str = "cpu" }, 0, 0, FLAGS }, > + { "optimize", "turn on graph executor optimization", > OFFSET(options.optimize), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS}, > + { NULL } > +}; > + > +AVFILTER_DEFINE_CLASS(dnn_th); > + > +static int extract_lltask_from_task(TaskItem *task, Queue > *lltask_queue) > +{ > + THModel *th_model = (THModel *)task->model; > + THContext *ctx = &th_model->ctx; > + LastLevelTaskItem *lltask = (LastLevelTaskItem > *)av_malloc(sizeof(*lltask)); > + if (!lltask) { > + av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for > LastLevelTaskItem\n"); > + return AVERROR(ENOMEM); > + } > + task->inference_todo = 1; > + task->inference_done = 0; > + lltask->task = task; > + if (ff_queue_push_back(lltask_queue, lltask) < 0) { > + av_log(ctx, AV_LOG_ERROR, "Failed to push back > lltask_queue.\n"); > + av_freep(&lltask); > + return AVERROR(ENOMEM); > + } > + return 0; > +} > + > +static void th_free_request(THInferRequest *request) > +{ > + if (!request) > + return; > + if (request->output) { > + delete(request->output); > + request->output = NULL; > + } > + if (request->input_tensor) { > + delete(request->input_tensor); > + request->input_tensor = NULL; > + } > + return; > +} > + > +static inline void destroy_request_item(THRequestItem **arg) > +{ > + THRequestItem *item; > + if (!arg || !*arg) { > + return; > + } > + item = *arg; > + th_free_request(item->infer_request); > + av_freep(&item->infer_request); > + av_freep(&item->lltask); > + ff_dnn_async_module_cleanup(&item->exec_module); > + av_freep(arg); > +} > + > +static void dnn_free_model_th(DNNModel **model) > +{ > + THModel *th_model; > + if (!model || !*model) > + return; > + > + th_model = (THModel *) (*model)->model; > + while (ff_safe_queue_size(th_model->request_queue) != 0) { > + THRequestItem *item = (THRequestItem > *)ff_safe_queue_pop_front(th_model->request_queue); > + destroy_request_item(&item); > + } > + ff_safe_queue_destroy(th_model->request_queue); > + > + while (ff_queue_size(th_model->lltask_queue) != 0) { > + LastLevelTaskItem *item = (LastLevelTaskItem > *)ff_queue_pop_front(th_model->lltask_queue); > + av_freep(&item); > + } > + ff_queue_destroy(th_model->lltask_queue); > + > + while (ff_queue_size(th_model->task_queue) != 0) { > + TaskItem *item = (TaskItem > *)ff_queue_pop_front(th_model->task_queue); > + av_frame_free(&item->in_frame); > + av_frame_free(&item->out_frame); > + av_freep(&item); > + } > + ff_queue_destroy(th_model->task_queue); > + delete th_model->jit_model; > + av_opt_free(&th_model->ctx); > + av_freep(&th_model); > + av_freep(model); > +} > + > +static int get_input_th(void *model, DNNData *input, const char > *input_name) > +{ > + input->dt = DNN_FLOAT; > + input->order = DCO_RGB; > + input->layout = DL_NCHW; > + input->dims[0] = 1; > + input->dims[1] = 3; > + input->dims[2] = -1; > + input->dims[3] = -1; > + return 0; > +} > + > +static void deleter(void *arg) > +{ > + av_freep(&arg); > +} > + > +static int fill_model_input_th(THModel *th_model, THRequestItem > *request) > +{ > + LastLevelTaskItem *lltask = NULL; > + TaskItem *task = NULL; > + THInferRequest *infer_request = NULL; > + DNNData input = { 0 }; > + THContext *ctx = &th_model->ctx; > + int ret, width_idx, height_idx, channel_idx; > + > + lltask = (LastLevelTaskItem > *)ff_queue_pop_front(th_model->lltask_queue); > + if (!lltask) { > + ret = AVERROR(EINVAL); > + goto err; > + } > + request->lltask = lltask; > + task = lltask->task; > + infer_request = request->infer_request; > + > + ret = get_input_th(th_model, &input, NULL); > + if ( ret != 0) { > + goto err; > + } > + width_idx = dnn_get_width_idx_by_layout(input.layout); > + height_idx = dnn_get_height_idx_by_layout(input.layout); > + channel_idx = dnn_get_channel_idx_by_layout(input.layout); > + input.dims[height_idx] = task->in_frame->height; > + input.dims[width_idx] = task->in_frame->width; > + input.data = av_malloc(input.dims[height_idx] * > input.dims[width_idx] * > + input.dims[channel_idx] * sizeof(float)); > + if (!input.data) > + return AVERROR(ENOMEM); > + infer_request->input_tensor = new torch::Tensor(); > + infer_request->output = new torch::Tensor(); > + > + switch (th_model->model->func_type) { > + case DFT_PROCESS_FRAME: > + input.scale = 255; > + if (task->do_ioproc) { > + if (th_model->model->frame_pre_proc != NULL) { > + th_model->model->frame_pre_proc(task->in_frame, > &input, th_model->model->filter_ctx); > + } else { > + ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx); > + } > + } > + break; > + default: > + avpriv_report_missing_feature(NULL, "model function type %d", > th_model->model->func_type); > + break; > + } > + *infer_request->input_tensor = torch::from_blob(input.data, > + {1, 1, input.dims[channel_idx], input.dims[height_idx], > input.dims[width_idx]}, > + deleter, torch::kFloat32); > + return 0; > + > +err: > + th_free_request(infer_request); > + return ret; > +} > + > +static int th_start_inference(void *args) > +{ > + THRequestItem *request = (THRequestItem *)args; > + THInferRequest *infer_request = NULL; > + LastLevelTaskItem *lltask = NULL; > + TaskItem *task = NULL; > + THModel *th_model = NULL; > + THContext *ctx = NULL; > + std::vector<torch::jit::IValue> inputs; > + torch::NoGradGuard no_grad; > + > + if (!request) { > + av_log(NULL, AV_LOG_ERROR, "THRequestItem is NULL\n"); > + return AVERROR(EINVAL); > + } > + infer_request = request->infer_request; > + lltask = request->lltask; > + task = lltask->task; > + th_model = (THModel *)task->model; > + ctx = &th_model->ctx; > + > + if (ctx->options.optimize) > + torch::jit::setGraphExecutorOptimize(true); > + else > + torch::jit::setGraphExecutorOptimize(false); > + > + if (!infer_request->input_tensor || !infer_request->output) { > + av_log(ctx, AV_LOG_ERROR, "input or output tensor is NULL\n"); > + return DNN_GENERIC_ERROR; > + } > + inputs.push_back(*infer_request->input_tensor); > + > + *infer_request->output = > th_model->jit_model->forward(inputs).toTensor(); > + > + return 0; > +} > + > +static void infer_completion_callback(void *args) { > + THRequestItem *request = (THRequestItem*)args; > + LastLevelTaskItem *lltask = request->lltask; > + TaskItem *task = lltask->task; > + DNNData outputs = { 0 }; > + THInferRequest *infer_request = request->infer_request; > + THModel *th_model = (THModel *)task->model; > + torch::Tensor *output = infer_request->output; > + > + c10::IntArrayRef sizes = output->sizes(); > + outputs.order = DCO_RGB; > + outputs.layout = DL_NCHW; > + outputs.dt = DNN_FLOAT; > + if (sizes.size() == 5) { > + // 5 dimensions: [batch_size, frame_nubmer, channel, height, > width] > + // this format of data is normally used for video frame SR > + outputs.dims[0] = sizes.at(0); // N > + outputs.dims[1] = sizes.at(2); // C > + outputs.dims[2] = sizes.at(3); // H > + outputs.dims[3] = sizes.at(4); // W > + } else { > + avpriv_report_missing_feature(&th_model->ctx, "Support of this > kind of model"); > + goto err; > + } > + > + switch (th_model->model->func_type) { > + case DFT_PROCESS_FRAME: > + if (task->do_ioproc) { > + outputs.scale = 255; > + outputs.data = output->data_ptr(); > + if (th_model->model->frame_post_proc != NULL) { > + th_model->model->frame_post_proc(task->out_frame, > &outputs, th_model->model->filter_ctx); > + } else { > + ff_proc_from_dnn_to_frame(task->out_frame, &outputs, > &th_model->ctx); > + } > + } else { > + task->out_frame->width = > outputs.dims[dnn_get_width_idx_by_layout(outputs.layout)]; > + task->out_frame->height = > outputs.dims[dnn_get_height_idx_by_layout(outputs.layout)]; > + } > + break; > + default: > + avpriv_report_missing_feature(&th_model->ctx, "model function > type %d", th_model->model->func_type); > + goto err; > + } > + task->inference_done++; > + av_freep(&request->lltask); > +err: > + th_free_request(infer_request); > + > + if (ff_safe_queue_push_back(th_model->request_queue, request) < 0) > { > + destroy_request_item(&request); > + av_log(&th_model->ctx, AV_LOG_ERROR, "Unable to push back > request_queue when failed to start inference.\n"); > + } > +} > + > +static int execute_model_th(THRequestItem *request, Queue > *lltask_queue) > +{ > + THModel *th_model = NULL; > + LastLevelTaskItem *lltask; > + TaskItem *task = NULL; > + int ret = 0; > + > + if (ff_queue_size(lltask_queue) == 0) { > + destroy_request_item(&request); > + return 0; > + } > + > + lltask = (LastLevelTaskItem *)ff_queue_peek_front(lltask_queue); > + if (lltask == NULL) { > + av_log(NULL, AV_LOG_ERROR, "Failed to get > LastLevelTaskItem\n"); > + ret = AVERROR(EINVAL); > + goto err; > + } > + task = lltask->task; > + th_model = (THModel *)task->model; > + > + ret = fill_model_input_th(th_model, request); > + if ( ret != 0) { > + goto err; > + } > + if (task->async) { > + avpriv_report_missing_feature(&th_model->ctx, "LibTorch > async"); > + } else { > + ret = th_start_inference((void *)(request)); > + if (ret != 0) { > + goto err; > + } > + infer_completion_callback(request); > + return (task->inference_done == task->inference_todo) ? 0 : > DNN_GENERIC_ERROR; > + } > + > +err: > + th_free_request(request->infer_request); > + if (ff_safe_queue_push_back(th_model->request_queue, request) < 0) > { > + destroy_request_item(&request); > + } > + return ret; > +} > + > +static int get_output_th(void *model, const char *input_name, int > input_width, int input_height, > + const char *output_name, int > *output_width, int *output_height) > +{ > + int ret = 0; > + THModel *th_model = (THModel*) model; > + THContext *ctx = &th_model->ctx; > + TaskItem task = { 0 }; > + THRequestItem *request = NULL; > + DNNExecBaseParams exec_params = { > + .input_name = input_name, > + .output_names = &output_name, > + .nb_output = 1, > + .in_frame = NULL, > + .out_frame = NULL, > + }; > + ret = ff_dnn_fill_gettingoutput_task(&task, &exec_params, > th_model, input_height, input_width, ctx); > + if ( ret != 0) { > + goto err; > + } > + > + ret = extract_lltask_from_task(&task, th_model->lltask_queue); > + if ( ret != 0) { > + av_log(ctx, AV_LOG_ERROR, "unable to extract last level task > from task.\n"); > + goto err; > + } > + > + request = (THRequestItem*) > ff_safe_queue_pop_front(th_model->request_queue); > + if (!request) { > + av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n"); > + ret = AVERROR(EINVAL); > + goto err; > + } > + > + ret = execute_model_th(request, th_model->lltask_queue); > + *output_width = task.out_frame->width; > + *output_height = task.out_frame->height; > + > +err: > + av_frame_free(&task.out_frame); > + av_frame_free(&task.in_frame); > + return ret; > +} > + > +static THInferRequest *th_create_inference_request(void) > +{ > + THInferRequest *request = (THInferRequest > *)av_malloc(sizeof(THInferRequest)); > + if (!request) { > + return NULL; > + } > + request->input_tensor = NULL; > + request->output = NULL; > + return request; > +} > + > +static DNNModel *dnn_load_model_th(const char *model_filename, > DNNFunctionType func_type, const char *options, AVFilterContext > *filter_ctx) > +{ > + DNNModel *model = NULL; > + THModel *th_model = NULL; > + THRequestItem *item = NULL; > + THContext *ctx; > + > + model = (DNNModel *)av_mallocz(sizeof(DNNModel)); > + if (!model) { > + return NULL; > + } > + > + th_model = (THModel *)av_mallocz(sizeof(THModel)); > + if (!th_model) { > + av_freep(&model); > + return NULL; > + } > + th_model->model = model; > + model->model = th_model; > + th_model->ctx.c_class = &dnn_th_class; > + ctx = &th_model->ctx; > + //parse options > + av_opt_set_defaults(ctx); > + if (av_opt_set_from_string(ctx, options, NULL, "=", "&") < 0) { > + av_log(ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n", > options); > + return NULL; > + } > + > + c10::Device device = c10::Device(ctx->options.device_name); > + if (!device.is_cpu()) { > + av_log(ctx, AV_LOG_ERROR, "Not supported device:\"%s\"\n", > ctx->options.device_name); > + goto fail; > + } > + > + try { > + th_model->jit_model = new torch::jit::Module; > + (*th_model->jit_model) = torch::jit::load(model_filename); > + } catch (const c10::Error& e) { > + av_log(ctx, AV_LOG_ERROR, "Failed to load torch model\n"); > + goto fail; > + } > + > + th_model->request_queue = ff_safe_queue_create(); > + if (!th_model->request_queue) { > + goto fail; > + } > + > + item = (THRequestItem *)av_mallocz(sizeof(THRequestItem)); > + if (!item) { > + goto fail; > + } > + item->lltask = NULL; > + item->infer_request = th_create_inference_request(); > + if (!item->infer_request) { > + av_log(NULL, AV_LOG_ERROR, "Failed to allocate memory for > Torch inference request\n"); > + goto fail; > + } > + item->exec_module.start_inference = &th_start_inference; > + item->exec_module.callback = &infer_completion_callback; > + item->exec_module.args = item; > + > + if (ff_safe_queue_push_back(th_model->request_queue, item) < 0) { > + goto fail; > + } > + item = NULL; > + > + th_model->task_queue = ff_queue_create(); > + if (!th_model->task_queue) { > + goto fail; > + } > + > + th_model->lltask_queue = ff_queue_create(); > + if (!th_model->lltask_queue) { > + goto fail; > + } > + > + model->get_input = &get_input_th; > + model->get_output = &get_output_th; > + model->options = NULL; > + model->filter_ctx = filter_ctx; > + model->func_type = func_type; > + return model; > + > +fail: > + if (item) { > + destroy_request_item(&item); > + av_freep(&item); > + } > + dnn_free_model_th(&model); > + return NULL; > +} > + > +static int dnn_execute_model_th(const DNNModel *model, > DNNExecBaseParams *exec_params) > +{ > + THModel *th_model = (THModel *)model->model; > + THContext *ctx = &th_model->ctx; > + TaskItem *task; > + THRequestItem *request; > + int ret = 0; > + > + ret = ff_check_exec_params(ctx, DNN_TH, model->func_type, > exec_params); > + if (ret != 0) { > + av_log(ctx, AV_LOG_ERROR, "exec parameter checking fail.\n"); > + return ret; > + } > + > + task = (TaskItem *)av_malloc(sizeof(TaskItem)); > + if (!task) { > + av_log(ctx, AV_LOG_ERROR, "unable to alloc memory for task > item.\n"); > + return AVERROR(ENOMEM); > + } > + > + ret = ff_dnn_fill_task(task, exec_params, th_model, 0, 1); > + if (ret != 0) { > + av_freep(&task); > + av_log(ctx, AV_LOG_ERROR, "unable to fill task.\n"); > + return ret; > + } > + > + ret = ff_queue_push_back(th_model->task_queue, task); > + if (ret < 0) { > + av_freep(&task); > + av_log(ctx, AV_LOG_ERROR, "unable to push back task_queue.\n"); > + return ret; > + } > + > + ret = extract_lltask_from_task(task, th_model->lltask_queue); > + if (ret != 0) { > + av_log(ctx, AV_LOG_ERROR, "unable to extract last level task > from task.\n"); > + return ret; > + } > + > + request = (THRequestItem > *)ff_safe_queue_pop_front(th_model->request_queue); > + if (!request) { > + av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n"); > + return AVERROR(EINVAL); > + } > + > + return execute_model_th(request, th_model->lltask_queue); > +} > + > +static DNNAsyncStatusType dnn_get_result_th(const DNNModel *model, > AVFrame **in, AVFrame **out) > +{ > + THModel *th_model = (THModel *)model->model; > + return ff_dnn_get_result_common(th_model->task_queue, in, out); > +} > + > +static int dnn_flush_th(const DNNModel *model) > +{ > + THModel *th_model = (THModel *)model->model; > + THRequestItem *request; > + > + if (ff_queue_size(th_model->lltask_queue) == 0) > + // no pending task need to flush > + return 0; > + > + request = (THRequestItem > *)ff_safe_queue_pop_front(th_model->request_queue); > + if (!request) { > + av_log(&th_model->ctx, AV_LOG_ERROR, "unable to get infer > request.\n"); > + return AVERROR(EINVAL); > + } > + > + return execute_model_th(request, th_model->lltask_queue); > +} > + > +extern const DNNModule ff_dnn_backend_torch = { > + .load_model = dnn_load_model_th, > + .execute_model = dnn_execute_model_th, > + .get_result = dnn_get_result_th, > + .flush = dnn_flush_th, > + .free_model = dnn_free_model_th, > +}; > diff --git a/libavfilter/dnn/dnn_interface.c > b/libavfilter/dnn/dnn_interface.c > index e843826aa6..b9f71aea53 100644 > --- a/libavfilter/dnn/dnn_interface.c > +++ b/libavfilter/dnn/dnn_interface.c > @@ -28,6 +28,7 @@ > > extern const DNNModule ff_dnn_backend_openvino; > extern const DNNModule ff_dnn_backend_tf; > +extern const DNNModule ff_dnn_backend_torch; > > const DNNModule *ff_get_dnn_module(DNNBackendType backend_type, void > *log_ctx) > { > @@ -40,6 +41,10 @@ const DNNModule *ff_get_dnn_module(DNNBackendType > backend_type, void *log_ctx) > case DNN_OV: > return &ff_dnn_backend_openvino; > #endif > + #if (CONFIG_LIBTORCH == 1) > + case DNN_TH: > + return &ff_dnn_backend_torch; > + #endif > default: > av_log(log_ctx, AV_LOG_ERROR, > "Module backend_type %d is not supported or > enabled.\n", > diff --git a/libavfilter/dnn_filter_common.c > b/libavfilter/dnn_filter_common.c > index f012d450a2..7d194c9ade 100644 > --- a/libavfilter/dnn_filter_common.c > +++ b/libavfilter/dnn_filter_common.c > @@ -53,12 +53,22 @@ static char **separate_output_names(const char > *expr, const char *val_sep, int * > > int ff_dnn_init(DnnContext *ctx, DNNFunctionType func_type, > AVFilterContext *filter_ctx) > { > + DNNBackendType backend = ctx->backend_type; > + > if (!ctx->model_filename) { > av_log(filter_ctx, AV_LOG_ERROR, "model file for network is > not specified\n"); > return AVERROR(EINVAL); > } > > - if (ctx->backend_type == DNN_TF) { > + if (backend == DNN_TH) { > + if (ctx->model_inputname) > + av_log(filter_ctx, AV_LOG_WARNING, "LibTorch backend do > not require inputname, "\ > + "inputname will be > ignored.\n"); > + if (ctx->model_outputnames) > + av_log(filter_ctx, AV_LOG_WARNING, "LibTorch backend do > not require outputname(s), "\ > + "all outputname(s) will > be ignored.\n"); > + ctx->nb_outputs = 1; > + } else if (backend == DNN_TF) { > if (!ctx->model_inputname) { > av_log(filter_ctx, AV_LOG_ERROR, "input name of the model > network is not specified\n"); > return AVERROR(EINVAL); > @@ -115,7 +125,8 @@ int ff_dnn_get_input(DnnContext *ctx, DNNData > *input) > > int ff_dnn_get_output(DnnContext *ctx, int input_width, int > input_height, int *output_width, int *output_height) > { > - char * output_name = ctx->model_outputnames ? > ctx->model_outputnames[0] : NULL; > + char * output_name = ctx->model_outputnames && ctx->backend_type > != DNN_TH ? > + ctx->model_outputnames[0] : NULL; > return ctx->model->get_output(ctx->model->model, > ctx->model_inputname, input_width, input_height, > (const char *)output_name, > output_width, output_height); > } > diff --git a/libavfilter/dnn_interface.h b/libavfilter/dnn_interface.h > index 852d88baa8..63f492e690 100644 > --- a/libavfilter/dnn_interface.h > +++ b/libavfilter/dnn_interface.h > @@ -32,7 +32,7 @@ > > #define DNN_GENERIC_ERROR FFERRTAG('D','N','N','!') > > -typedef enum {DNN_TF = 1, DNN_OV} DNNBackendType; > +typedef enum {DNN_TF = 1, DNN_OV, DNN_TH} DNNBackendType; > > typedef enum {DNN_FLOAT = 1, DNN_UINT8 = 4} DNNDataType; > > diff --git a/libavfilter/vf_dnn_processing.c > b/libavfilter/vf_dnn_processing.c > index e7d21eef32..fdac31665e 100644 > --- a/libavfilter/vf_dnn_processing.c > +++ b/libavfilter/vf_dnn_processing.c > @@ -50,6 +50,9 @@ static const AVOption dnn_processing_options[] = { > #endif > #if (CONFIG_LIBOPENVINO == 1) > { "openvino", "openvino backend flag", 0, > AV_OPT_TYPE_CONST, { .i64 = DNN_OV }, 0, 0, FLAGS, .unit = > "backend" }, > +#endif > +#if (CONFIG_LIBTORCH == 1) > + { "torch", "torch backend flag", 0, > AV_OPT_TYPE_CONST, { .i64 = DNN_TH }, 0, 0, FLAGS, > "backend" }, > #endif > DNN_COMMON_OPTIONS > { NULL } > -- > 2.34.1 > > _______________________________________________ > ffmpeg-devel mailing list > ffmpeg-devel@ffmpeg.org > https://ffmpeg.org/mailman/listinfo/ffmpeg-devel > > To unsubscribe, visit link above, or email > ffmpeg-devel-request@ffmpeg.org with subject "unsubscribe". -- Jean-Baptiste Kempf - President +33 672 704 734 _______________________________________________ ffmpeg-devel mailing list ffmpeg-devel@ffmpeg.org https://ffmpeg.org/mailman/listinfo/ffmpeg-devel To unsubscribe, visit link above, or email ffmpeg-devel-request@ffmpeg.org with subject "unsubscribe".
next prev parent reply other threads:[~2024-02-21 1:45 UTC|newest] Thread overview: 3+ messages / expand[flat|nested] mbox.gz Atom feed top 2024-02-20 4:48 wenbin.chen-at-intel.com 2024-02-21 1:44 ` Jean-Baptiste Kempf [this message] 2024-02-21 3:08 ` Chen, Wenbin
Reply instructions: You may reply publicly to this message via plain-text email using any one of the following methods: * Save the following mbox file, import it into your mail client, and reply-to-all from there: mbox Avoid top-posting and favor interleaved quoting: https://en.wikipedia.org/wiki/Posting_style#Interleaved_style * Reply using the --to, --cc, and --in-reply-to switches of git-send-email(1): git send-email \ --in-reply-to=a402d9ef-be22-41e2-96eb-84b53101d1e7@betaapp.fastmail.com \ --to=jb@videolan.org \ --cc=ffmpeg-devel@ffmpeg.org \ /path/to/YOUR_REPLY https://kernel.org/pub/software/scm/git/docs/git-send-email.html * If your mail client supports setting the In-Reply-To header via mailto: links, try the mailto: link
Git Inbox Mirror of the ffmpeg-devel mailing list - see https://ffmpeg.org/mailman/listinfo/ffmpeg-devel This inbox may be cloned and mirrored by anyone: git clone --mirror https://master.gitmailbox.com/ffmpegdev/0 ffmpegdev/git/0.git # If you have public-inbox 1.1+ installed, you may # initialize and index your mirror using the following commands: public-inbox-init -V2 ffmpegdev ffmpegdev/ https://master.gitmailbox.com/ffmpegdev \ ffmpegdev@gitmailbox.com public-inbox-index ffmpegdev Example config snippet for mirrors. AGPL code for this site: git clone https://public-inbox.org/public-inbox.git