* [FFmpeg-devel] [PATCH v3] libavfi/dnn: add LibTorch as one of DNN backend
@ 2024-02-20 4:48 wenbin.chen-at-intel.com
2024-02-21 1:44 ` Jean-Baptiste Kempf
0 siblings, 1 reply; 3+ messages in thread
From: wenbin.chen-at-intel.com @ 2024-02-20 4:48 UTC (permalink / raw)
To: ffmpeg-devel
From: Wenbin Chen <wenbin.chen@intel.com>
PyTorch is an open source machine learning framework that accelerates
the path from research prototyping to production deployment. Official
websit: https://pytorch.org/. We call the C++ library of PyTorch as
LibTorch, the same below.
To build FFmpeg with LibTorch, please take following steps as reference:
1. download LibTorch C++ library in https://pytorch.org/get-started/locally/,
please select C++/Java for language, and other options as your need.
2. unzip the file to your own dir, with command
unzip libtorch-shared-with-deps-latest.zip -d your_dir
3. export libtorch_root/libtorch/include and
libtorch_root/libtorch/include/torch/csrc/api/include to $PATH
export libtorch_root/libtorch/lib/ to $LD_LIBRARY_PATH
4. config FFmpeg with ../configure --enable-libtorch --extra-cflag=-I/libtorch_root/libtorch/include --extra-cflag=-I/libtorch_root/libtorch/include/torch/csrc/api/include --extra-ldflags=-L/libtorch_root/libtorch/lib/
5. make
To run FFmpeg DNN inference with LibTorch backend:
./ffmpeg -i input.jpg -vf dnn_processing=dnn_backend=torch:model=LibTorch_model.pt -y output.jpg
The LibTorch_model.pt can be generated by Python with torch.jit.script() api. Please note, torch.jit.trace() is not recommanded, since it does not support ambiguous input size.
Signed-off-by: Ting Fu <ting.fu@intel.com>
Signed-off-by: Wenbin Chen <wenbin.chen@intel.com>
---
configure | 5 +-
libavfilter/dnn/Makefile | 1 +
libavfilter/dnn/dnn_backend_torch.cpp | 597 ++++++++++++++++++++++++++
libavfilter/dnn/dnn_interface.c | 5 +
libavfilter/dnn_filter_common.c | 15 +-
libavfilter/dnn_interface.h | 2 +-
libavfilter/vf_dnn_processing.c | 3 +
7 files changed, 624 insertions(+), 4 deletions(-)
create mode 100644 libavfilter/dnn/dnn_backend_torch.cpp
diff --git a/configure b/configure
index 2c635043dd..450ef54a80 100755
--- a/configure
+++ b/configure
@@ -279,6 +279,7 @@ External library support:
--enable-libtheora enable Theora encoding via libtheora [no]
--enable-libtls enable LibreSSL (via libtls), needed for https support
if openssl, gnutls or mbedtls is not used [no]
+ --enable-libtorch enable Torch as one DNN backend [no]
--enable-libtwolame enable MP2 encoding via libtwolame [no]
--enable-libuavs3d enable AVS3 decoding via libuavs3d [no]
--enable-libv4l2 enable libv4l2/v4l-utils [no]
@@ -1901,6 +1902,7 @@ EXTERNAL_LIBRARY_LIST="
libtensorflow
libtesseract
libtheora
+ libtorch
libtwolame
libuavs3d
libv4l2
@@ -2781,7 +2783,7 @@ cbs_vp9_select="cbs"
deflate_wrapper_deps="zlib"
dirac_parse_select="golomb"
dovi_rpu_select="golomb"
-dnn_suggest="libtensorflow libopenvino"
+dnn_suggest="libtensorflow libopenvino libtorch"
dnn_deps="avformat swscale"
error_resilience_select="me_cmp"
evcparse_select="golomb"
@@ -6886,6 +6888,7 @@ enabled libtensorflow && require libtensorflow tensorflow/c/c_api.h TF_Versi
enabled libtesseract && require_pkg_config libtesseract tesseract tesseract/capi.h TessBaseAPICreate
enabled libtheora && require libtheora theora/theoraenc.h th_info_init -ltheoraenc -ltheoradec -logg
enabled libtls && require_pkg_config libtls libtls tls.h tls_configure
+enabled libtorch && check_cxxflags -std=c++14 && require_cpp libtorch torch/torch.h "torch::Tensor" -ltorch -lc10 -ltorch_cpu -lstdc++ -lpthread
enabled libtwolame && require libtwolame twolame.h twolame_init -ltwolame &&
{ check_lib libtwolame twolame.h twolame_encode_buffer_float32_interleaved -ltwolame ||
die "ERROR: libtwolame must be installed and version must be >= 0.3.10"; }
diff --git a/libavfilter/dnn/Makefile b/libavfilter/dnn/Makefile
index 5d5697ea42..3d09927c98 100644
--- a/libavfilter/dnn/Makefile
+++ b/libavfilter/dnn/Makefile
@@ -6,5 +6,6 @@ OBJS-$(CONFIG_DNN) += dnn/dnn_backend_common.o
DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o
DNN-OBJS-$(CONFIG_LIBOPENVINO) += dnn/dnn_backend_openvino.o
+DNN-OBJS-$(CONFIG_LIBTORCH) += dnn/dnn_backend_torch.o
OBJS-$(CONFIG_DNN) += $(DNN-OBJS-yes)
diff --git a/libavfilter/dnn/dnn_backend_torch.cpp b/libavfilter/dnn/dnn_backend_torch.cpp
new file mode 100644
index 0000000000..54d3b309a1
--- /dev/null
+++ b/libavfilter/dnn/dnn_backend_torch.cpp
@@ -0,0 +1,597 @@
+/*
+ * Copyright (c) 2024
+ *
+ * This file is part of FFmpeg.
+ *
+ * FFmpeg is free software; you can redistribute it and/or
+ * modify it under the terms of the GNU Lesser General Public
+ * License as published by the Free Software Foundation; either
+ * version 2.1 of the License, or (at your option) any later version.
+ *
+ * FFmpeg is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
+ * Lesser General Public License for more details.
+ *
+ * You should have received a copy of the GNU Lesser General Public
+ * License along with FFmpeg; if not, write to the Free Software
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
+ */
+
+/**
+ * @file
+ * DNN Torch backend implementation.
+ */
+
+#include <torch/torch.h>
+#include <torch/script.h>
+
+extern "C" {
+#include "../internal.h"
+#include "dnn_io_proc.h"
+#include "dnn_backend_common.h"
+#include "libavutil/opt.h"
+#include "queue.h"
+#include "safe_queue.h"
+}
+
+typedef struct THOptions{
+ char *device_name;
+ int optimize;
+} THOptions;
+
+typedef struct THContext {
+ const AVClass *c_class;
+ THOptions options;
+} THContext;
+
+typedef struct THModel {
+ THContext ctx;
+ DNNModel *model;
+ torch::jit::Module *jit_model;
+ SafeQueue *request_queue;
+ Queue *task_queue;
+ Queue *lltask_queue;
+} THModel;
+
+typedef struct THInferRequest {
+ torch::Tensor *output;
+ torch::Tensor *input_tensor;
+} THInferRequest;
+
+typedef struct THRequestItem {
+ THInferRequest *infer_request;
+ LastLevelTaskItem *lltask;
+ DNNAsyncExecModule exec_module;
+} THRequestItem;
+
+
+#define OFFSET(x) offsetof(THContext, x)
+#define FLAGS AV_OPT_FLAG_FILTERING_PARAM
+static const AVOption dnn_th_options[] = {
+ { "device", "device to run model", OFFSET(options.device_name), AV_OPT_TYPE_STRING, { .str = "cpu" }, 0, 0, FLAGS },
+ { "optimize", "turn on graph executor optimization", OFFSET(options.optimize), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS},
+ { NULL }
+};
+
+AVFILTER_DEFINE_CLASS(dnn_th);
+
+static int extract_lltask_from_task(TaskItem *task, Queue *lltask_queue)
+{
+ THModel *th_model = (THModel *)task->model;
+ THContext *ctx = &th_model->ctx;
+ LastLevelTaskItem *lltask = (LastLevelTaskItem *)av_malloc(sizeof(*lltask));
+ if (!lltask) {
+ av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for LastLevelTaskItem\n");
+ return AVERROR(ENOMEM);
+ }
+ task->inference_todo = 1;
+ task->inference_done = 0;
+ lltask->task = task;
+ if (ff_queue_push_back(lltask_queue, lltask) < 0) {
+ av_log(ctx, AV_LOG_ERROR, "Failed to push back lltask_queue.\n");
+ av_freep(&lltask);
+ return AVERROR(ENOMEM);
+ }
+ return 0;
+}
+
+static void th_free_request(THInferRequest *request)
+{
+ if (!request)
+ return;
+ if (request->output) {
+ delete(request->output);
+ request->output = NULL;
+ }
+ if (request->input_tensor) {
+ delete(request->input_tensor);
+ request->input_tensor = NULL;
+ }
+ return;
+}
+
+static inline void destroy_request_item(THRequestItem **arg)
+{
+ THRequestItem *item;
+ if (!arg || !*arg) {
+ return;
+ }
+ item = *arg;
+ th_free_request(item->infer_request);
+ av_freep(&item->infer_request);
+ av_freep(&item->lltask);
+ ff_dnn_async_module_cleanup(&item->exec_module);
+ av_freep(arg);
+}
+
+static void dnn_free_model_th(DNNModel **model)
+{
+ THModel *th_model;
+ if (!model || !*model)
+ return;
+
+ th_model = (THModel *) (*model)->model;
+ while (ff_safe_queue_size(th_model->request_queue) != 0) {
+ THRequestItem *item = (THRequestItem *)ff_safe_queue_pop_front(th_model->request_queue);
+ destroy_request_item(&item);
+ }
+ ff_safe_queue_destroy(th_model->request_queue);
+
+ while (ff_queue_size(th_model->lltask_queue) != 0) {
+ LastLevelTaskItem *item = (LastLevelTaskItem *)ff_queue_pop_front(th_model->lltask_queue);
+ av_freep(&item);
+ }
+ ff_queue_destroy(th_model->lltask_queue);
+
+ while (ff_queue_size(th_model->task_queue) != 0) {
+ TaskItem *item = (TaskItem *)ff_queue_pop_front(th_model->task_queue);
+ av_frame_free(&item->in_frame);
+ av_frame_free(&item->out_frame);
+ av_freep(&item);
+ }
+ ff_queue_destroy(th_model->task_queue);
+ delete th_model->jit_model;
+ av_opt_free(&th_model->ctx);
+ av_freep(&th_model);
+ av_freep(model);
+}
+
+static int get_input_th(void *model, DNNData *input, const char *input_name)
+{
+ input->dt = DNN_FLOAT;
+ input->order = DCO_RGB;
+ input->layout = DL_NCHW;
+ input->dims[0] = 1;
+ input->dims[1] = 3;
+ input->dims[2] = -1;
+ input->dims[3] = -1;
+ return 0;
+}
+
+static void deleter(void *arg)
+{
+ av_freep(&arg);
+}
+
+static int fill_model_input_th(THModel *th_model, THRequestItem *request)
+{
+ LastLevelTaskItem *lltask = NULL;
+ TaskItem *task = NULL;
+ THInferRequest *infer_request = NULL;
+ DNNData input = { 0 };
+ THContext *ctx = &th_model->ctx;
+ int ret, width_idx, height_idx, channel_idx;
+
+ lltask = (LastLevelTaskItem *)ff_queue_pop_front(th_model->lltask_queue);
+ if (!lltask) {
+ ret = AVERROR(EINVAL);
+ goto err;
+ }
+ request->lltask = lltask;
+ task = lltask->task;
+ infer_request = request->infer_request;
+
+ ret = get_input_th(th_model, &input, NULL);
+ if ( ret != 0) {
+ goto err;
+ }
+ width_idx = dnn_get_width_idx_by_layout(input.layout);
+ height_idx = dnn_get_height_idx_by_layout(input.layout);
+ channel_idx = dnn_get_channel_idx_by_layout(input.layout);
+ input.dims[height_idx] = task->in_frame->height;
+ input.dims[width_idx] = task->in_frame->width;
+ input.data = av_malloc(input.dims[height_idx] * input.dims[width_idx] *
+ input.dims[channel_idx] * sizeof(float));
+ if (!input.data)
+ return AVERROR(ENOMEM);
+ infer_request->input_tensor = new torch::Tensor();
+ infer_request->output = new torch::Tensor();
+
+ switch (th_model->model->func_type) {
+ case DFT_PROCESS_FRAME:
+ input.scale = 255;
+ if (task->do_ioproc) {
+ if (th_model->model->frame_pre_proc != NULL) {
+ th_model->model->frame_pre_proc(task->in_frame, &input, th_model->model->filter_ctx);
+ } else {
+ ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx);
+ }
+ }
+ break;
+ default:
+ avpriv_report_missing_feature(NULL, "model function type %d", th_model->model->func_type);
+ break;
+ }
+ *infer_request->input_tensor = torch::from_blob(input.data,
+ {1, 1, input.dims[channel_idx], input.dims[height_idx], input.dims[width_idx]},
+ deleter, torch::kFloat32);
+ return 0;
+
+err:
+ th_free_request(infer_request);
+ return ret;
+}
+
+static int th_start_inference(void *args)
+{
+ THRequestItem *request = (THRequestItem *)args;
+ THInferRequest *infer_request = NULL;
+ LastLevelTaskItem *lltask = NULL;
+ TaskItem *task = NULL;
+ THModel *th_model = NULL;
+ THContext *ctx = NULL;
+ std::vector<torch::jit::IValue> inputs;
+ torch::NoGradGuard no_grad;
+
+ if (!request) {
+ av_log(NULL, AV_LOG_ERROR, "THRequestItem is NULL\n");
+ return AVERROR(EINVAL);
+ }
+ infer_request = request->infer_request;
+ lltask = request->lltask;
+ task = lltask->task;
+ th_model = (THModel *)task->model;
+ ctx = &th_model->ctx;
+
+ if (ctx->options.optimize)
+ torch::jit::setGraphExecutorOptimize(true);
+ else
+ torch::jit::setGraphExecutorOptimize(false);
+
+ if (!infer_request->input_tensor || !infer_request->output) {
+ av_log(ctx, AV_LOG_ERROR, "input or output tensor is NULL\n");
+ return DNN_GENERIC_ERROR;
+ }
+ inputs.push_back(*infer_request->input_tensor);
+
+ *infer_request->output = th_model->jit_model->forward(inputs).toTensor();
+
+ return 0;
+}
+
+static void infer_completion_callback(void *args) {
+ THRequestItem *request = (THRequestItem*)args;
+ LastLevelTaskItem *lltask = request->lltask;
+ TaskItem *task = lltask->task;
+ DNNData outputs = { 0 };
+ THInferRequest *infer_request = request->infer_request;
+ THModel *th_model = (THModel *)task->model;
+ torch::Tensor *output = infer_request->output;
+
+ c10::IntArrayRef sizes = output->sizes();
+ outputs.order = DCO_RGB;
+ outputs.layout = DL_NCHW;
+ outputs.dt = DNN_FLOAT;
+ if (sizes.size() == 5) {
+ // 5 dimensions: [batch_size, frame_nubmer, channel, height, width]
+ // this format of data is normally used for video frame SR
+ outputs.dims[0] = sizes.at(0); // N
+ outputs.dims[1] = sizes.at(2); // C
+ outputs.dims[2] = sizes.at(3); // H
+ outputs.dims[3] = sizes.at(4); // W
+ } else {
+ avpriv_report_missing_feature(&th_model->ctx, "Support of this kind of model");
+ goto err;
+ }
+
+ switch (th_model->model->func_type) {
+ case DFT_PROCESS_FRAME:
+ if (task->do_ioproc) {
+ outputs.scale = 255;
+ outputs.data = output->data_ptr();
+ if (th_model->model->frame_post_proc != NULL) {
+ th_model->model->frame_post_proc(task->out_frame, &outputs, th_model->model->filter_ctx);
+ } else {
+ ff_proc_from_dnn_to_frame(task->out_frame, &outputs, &th_model->ctx);
+ }
+ } else {
+ task->out_frame->width = outputs.dims[dnn_get_width_idx_by_layout(outputs.layout)];
+ task->out_frame->height = outputs.dims[dnn_get_height_idx_by_layout(outputs.layout)];
+ }
+ break;
+ default:
+ avpriv_report_missing_feature(&th_model->ctx, "model function type %d", th_model->model->func_type);
+ goto err;
+ }
+ task->inference_done++;
+ av_freep(&request->lltask);
+err:
+ th_free_request(infer_request);
+
+ if (ff_safe_queue_push_back(th_model->request_queue, request) < 0) {
+ destroy_request_item(&request);
+ av_log(&th_model->ctx, AV_LOG_ERROR, "Unable to push back request_queue when failed to start inference.\n");
+ }
+}
+
+static int execute_model_th(THRequestItem *request, Queue *lltask_queue)
+{
+ THModel *th_model = NULL;
+ LastLevelTaskItem *lltask;
+ TaskItem *task = NULL;
+ int ret = 0;
+
+ if (ff_queue_size(lltask_queue) == 0) {
+ destroy_request_item(&request);
+ return 0;
+ }
+
+ lltask = (LastLevelTaskItem *)ff_queue_peek_front(lltask_queue);
+ if (lltask == NULL) {
+ av_log(NULL, AV_LOG_ERROR, "Failed to get LastLevelTaskItem\n");
+ ret = AVERROR(EINVAL);
+ goto err;
+ }
+ task = lltask->task;
+ th_model = (THModel *)task->model;
+
+ ret = fill_model_input_th(th_model, request);
+ if ( ret != 0) {
+ goto err;
+ }
+ if (task->async) {
+ avpriv_report_missing_feature(&th_model->ctx, "LibTorch async");
+ } else {
+ ret = th_start_inference((void *)(request));
+ if (ret != 0) {
+ goto err;
+ }
+ infer_completion_callback(request);
+ return (task->inference_done == task->inference_todo) ? 0 : DNN_GENERIC_ERROR;
+ }
+
+err:
+ th_free_request(request->infer_request);
+ if (ff_safe_queue_push_back(th_model->request_queue, request) < 0) {
+ destroy_request_item(&request);
+ }
+ return ret;
+}
+
+static int get_output_th(void *model, const char *input_name, int input_width, int input_height,
+ const char *output_name, int *output_width, int *output_height)
+{
+ int ret = 0;
+ THModel *th_model = (THModel*) model;
+ THContext *ctx = &th_model->ctx;
+ TaskItem task = { 0 };
+ THRequestItem *request = NULL;
+ DNNExecBaseParams exec_params = {
+ .input_name = input_name,
+ .output_names = &output_name,
+ .nb_output = 1,
+ .in_frame = NULL,
+ .out_frame = NULL,
+ };
+ ret = ff_dnn_fill_gettingoutput_task(&task, &exec_params, th_model, input_height, input_width, ctx);
+ if ( ret != 0) {
+ goto err;
+ }
+
+ ret = extract_lltask_from_task(&task, th_model->lltask_queue);
+ if ( ret != 0) {
+ av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
+ goto err;
+ }
+
+ request = (THRequestItem*) ff_safe_queue_pop_front(th_model->request_queue);
+ if (!request) {
+ av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
+ ret = AVERROR(EINVAL);
+ goto err;
+ }
+
+ ret = execute_model_th(request, th_model->lltask_queue);
+ *output_width = task.out_frame->width;
+ *output_height = task.out_frame->height;
+
+err:
+ av_frame_free(&task.out_frame);
+ av_frame_free(&task.in_frame);
+ return ret;
+}
+
+static THInferRequest *th_create_inference_request(void)
+{
+ THInferRequest *request = (THInferRequest *)av_malloc(sizeof(THInferRequest));
+ if (!request) {
+ return NULL;
+ }
+ request->input_tensor = NULL;
+ request->output = NULL;
+ return request;
+}
+
+static DNNModel *dnn_load_model_th(const char *model_filename, DNNFunctionType func_type, const char *options, AVFilterContext *filter_ctx)
+{
+ DNNModel *model = NULL;
+ THModel *th_model = NULL;
+ THRequestItem *item = NULL;
+ THContext *ctx;
+
+ model = (DNNModel *)av_mallocz(sizeof(DNNModel));
+ if (!model) {
+ return NULL;
+ }
+
+ th_model = (THModel *)av_mallocz(sizeof(THModel));
+ if (!th_model) {
+ av_freep(&model);
+ return NULL;
+ }
+ th_model->model = model;
+ model->model = th_model;
+ th_model->ctx.c_class = &dnn_th_class;
+ ctx = &th_model->ctx;
+ //parse options
+ av_opt_set_defaults(ctx);
+ if (av_opt_set_from_string(ctx, options, NULL, "=", "&") < 0) {
+ av_log(ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n", options);
+ return NULL;
+ }
+
+ c10::Device device = c10::Device(ctx->options.device_name);
+ if (!device.is_cpu()) {
+ av_log(ctx, AV_LOG_ERROR, "Not supported device:\"%s\"\n", ctx->options.device_name);
+ goto fail;
+ }
+
+ try {
+ th_model->jit_model = new torch::jit::Module;
+ (*th_model->jit_model) = torch::jit::load(model_filename);
+ } catch (const c10::Error& e) {
+ av_log(ctx, AV_LOG_ERROR, "Failed to load torch model\n");
+ goto fail;
+ }
+
+ th_model->request_queue = ff_safe_queue_create();
+ if (!th_model->request_queue) {
+ goto fail;
+ }
+
+ item = (THRequestItem *)av_mallocz(sizeof(THRequestItem));
+ if (!item) {
+ goto fail;
+ }
+ item->lltask = NULL;
+ item->infer_request = th_create_inference_request();
+ if (!item->infer_request) {
+ av_log(NULL, AV_LOG_ERROR, "Failed to allocate memory for Torch inference request\n");
+ goto fail;
+ }
+ item->exec_module.start_inference = &th_start_inference;
+ item->exec_module.callback = &infer_completion_callback;
+ item->exec_module.args = item;
+
+ if (ff_safe_queue_push_back(th_model->request_queue, item) < 0) {
+ goto fail;
+ }
+ item = NULL;
+
+ th_model->task_queue = ff_queue_create();
+ if (!th_model->task_queue) {
+ goto fail;
+ }
+
+ th_model->lltask_queue = ff_queue_create();
+ if (!th_model->lltask_queue) {
+ goto fail;
+ }
+
+ model->get_input = &get_input_th;
+ model->get_output = &get_output_th;
+ model->options = NULL;
+ model->filter_ctx = filter_ctx;
+ model->func_type = func_type;
+ return model;
+
+fail:
+ if (item) {
+ destroy_request_item(&item);
+ av_freep(&item);
+ }
+ dnn_free_model_th(&model);
+ return NULL;
+}
+
+static int dnn_execute_model_th(const DNNModel *model, DNNExecBaseParams *exec_params)
+{
+ THModel *th_model = (THModel *)model->model;
+ THContext *ctx = &th_model->ctx;
+ TaskItem *task;
+ THRequestItem *request;
+ int ret = 0;
+
+ ret = ff_check_exec_params(ctx, DNN_TH, model->func_type, exec_params);
+ if (ret != 0) {
+ av_log(ctx, AV_LOG_ERROR, "exec parameter checking fail.\n");
+ return ret;
+ }
+
+ task = (TaskItem *)av_malloc(sizeof(TaskItem));
+ if (!task) {
+ av_log(ctx, AV_LOG_ERROR, "unable to alloc memory for task item.\n");
+ return AVERROR(ENOMEM);
+ }
+
+ ret = ff_dnn_fill_task(task, exec_params, th_model, 0, 1);
+ if (ret != 0) {
+ av_freep(&task);
+ av_log(ctx, AV_LOG_ERROR, "unable to fill task.\n");
+ return ret;
+ }
+
+ ret = ff_queue_push_back(th_model->task_queue, task);
+ if (ret < 0) {
+ av_freep(&task);
+ av_log(ctx, AV_LOG_ERROR, "unable to push back task_queue.\n");
+ return ret;
+ }
+
+ ret = extract_lltask_from_task(task, th_model->lltask_queue);
+ if (ret != 0) {
+ av_log(ctx, AV_LOG_ERROR, "unable to extract last level task from task.\n");
+ return ret;
+ }
+
+ request = (THRequestItem *)ff_safe_queue_pop_front(th_model->request_queue);
+ if (!request) {
+ av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
+ return AVERROR(EINVAL);
+ }
+
+ return execute_model_th(request, th_model->lltask_queue);
+}
+
+static DNNAsyncStatusType dnn_get_result_th(const DNNModel *model, AVFrame **in, AVFrame **out)
+{
+ THModel *th_model = (THModel *)model->model;
+ return ff_dnn_get_result_common(th_model->task_queue, in, out);
+}
+
+static int dnn_flush_th(const DNNModel *model)
+{
+ THModel *th_model = (THModel *)model->model;
+ THRequestItem *request;
+
+ if (ff_queue_size(th_model->lltask_queue) == 0)
+ // no pending task need to flush
+ return 0;
+
+ request = (THRequestItem *)ff_safe_queue_pop_front(th_model->request_queue);
+ if (!request) {
+ av_log(&th_model->ctx, AV_LOG_ERROR, "unable to get infer request.\n");
+ return AVERROR(EINVAL);
+ }
+
+ return execute_model_th(request, th_model->lltask_queue);
+}
+
+extern const DNNModule ff_dnn_backend_torch = {
+ .load_model = dnn_load_model_th,
+ .execute_model = dnn_execute_model_th,
+ .get_result = dnn_get_result_th,
+ .flush = dnn_flush_th,
+ .free_model = dnn_free_model_th,
+};
diff --git a/libavfilter/dnn/dnn_interface.c b/libavfilter/dnn/dnn_interface.c
index e843826aa6..b9f71aea53 100644
--- a/libavfilter/dnn/dnn_interface.c
+++ b/libavfilter/dnn/dnn_interface.c
@@ -28,6 +28,7 @@
extern const DNNModule ff_dnn_backend_openvino;
extern const DNNModule ff_dnn_backend_tf;
+extern const DNNModule ff_dnn_backend_torch;
const DNNModule *ff_get_dnn_module(DNNBackendType backend_type, void *log_ctx)
{
@@ -40,6 +41,10 @@ const DNNModule *ff_get_dnn_module(DNNBackendType backend_type, void *log_ctx)
case DNN_OV:
return &ff_dnn_backend_openvino;
#endif
+ #if (CONFIG_LIBTORCH == 1)
+ case DNN_TH:
+ return &ff_dnn_backend_torch;
+ #endif
default:
av_log(log_ctx, AV_LOG_ERROR,
"Module backend_type %d is not supported or enabled.\n",
diff --git a/libavfilter/dnn_filter_common.c b/libavfilter/dnn_filter_common.c
index f012d450a2..7d194c9ade 100644
--- a/libavfilter/dnn_filter_common.c
+++ b/libavfilter/dnn_filter_common.c
@@ -53,12 +53,22 @@ static char **separate_output_names(const char *expr, const char *val_sep, int *
int ff_dnn_init(DnnContext *ctx, DNNFunctionType func_type, AVFilterContext *filter_ctx)
{
+ DNNBackendType backend = ctx->backend_type;
+
if (!ctx->model_filename) {
av_log(filter_ctx, AV_LOG_ERROR, "model file for network is not specified\n");
return AVERROR(EINVAL);
}
- if (ctx->backend_type == DNN_TF) {
+ if (backend == DNN_TH) {
+ if (ctx->model_inputname)
+ av_log(filter_ctx, AV_LOG_WARNING, "LibTorch backend do not require inputname, "\
+ "inputname will be ignored.\n");
+ if (ctx->model_outputnames)
+ av_log(filter_ctx, AV_LOG_WARNING, "LibTorch backend do not require outputname(s), "\
+ "all outputname(s) will be ignored.\n");
+ ctx->nb_outputs = 1;
+ } else if (backend == DNN_TF) {
if (!ctx->model_inputname) {
av_log(filter_ctx, AV_LOG_ERROR, "input name of the model network is not specified\n");
return AVERROR(EINVAL);
@@ -115,7 +125,8 @@ int ff_dnn_get_input(DnnContext *ctx, DNNData *input)
int ff_dnn_get_output(DnnContext *ctx, int input_width, int input_height, int *output_width, int *output_height)
{
- char * output_name = ctx->model_outputnames ? ctx->model_outputnames[0] : NULL;
+ char * output_name = ctx->model_outputnames && ctx->backend_type != DNN_TH ?
+ ctx->model_outputnames[0] : NULL;
return ctx->model->get_output(ctx->model->model, ctx->model_inputname, input_width, input_height,
(const char *)output_name, output_width, output_height);
}
diff --git a/libavfilter/dnn_interface.h b/libavfilter/dnn_interface.h
index 852d88baa8..63f492e690 100644
--- a/libavfilter/dnn_interface.h
+++ b/libavfilter/dnn_interface.h
@@ -32,7 +32,7 @@
#define DNN_GENERIC_ERROR FFERRTAG('D','N','N','!')
-typedef enum {DNN_TF = 1, DNN_OV} DNNBackendType;
+typedef enum {DNN_TF = 1, DNN_OV, DNN_TH} DNNBackendType;
typedef enum {DNN_FLOAT = 1, DNN_UINT8 = 4} DNNDataType;
diff --git a/libavfilter/vf_dnn_processing.c b/libavfilter/vf_dnn_processing.c
index e7d21eef32..fdac31665e 100644
--- a/libavfilter/vf_dnn_processing.c
+++ b/libavfilter/vf_dnn_processing.c
@@ -50,6 +50,9 @@ static const AVOption dnn_processing_options[] = {
#endif
#if (CONFIG_LIBOPENVINO == 1)
{ "openvino", "openvino backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = DNN_OV }, 0, 0, FLAGS, .unit = "backend" },
+#endif
+#if (CONFIG_LIBTORCH == 1)
+ { "torch", "torch backend flag", 0, AV_OPT_TYPE_CONST, { .i64 = DNN_TH }, 0, 0, FLAGS, "backend" },
#endif
DNN_COMMON_OPTIONS
{ NULL }
--
2.34.1
_______________________________________________
ffmpeg-devel mailing list
ffmpeg-devel@ffmpeg.org
https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
To unsubscribe, visit link above, or email
ffmpeg-devel-request@ffmpeg.org with subject "unsubscribe".
^ permalink raw reply [flat|nested] 3+ messages in thread
* Re: [FFmpeg-devel] [PATCH v3] libavfi/dnn: add LibTorch as one of DNN backend
2024-02-20 4:48 [FFmpeg-devel] [PATCH v3] libavfi/dnn: add LibTorch as one of DNN backend wenbin.chen-at-intel.com
@ 2024-02-21 1:44 ` Jean-Baptiste Kempf
2024-02-21 3:08 ` Chen, Wenbin
0 siblings, 1 reply; 3+ messages in thread
From: Jean-Baptiste Kempf @ 2024-02-21 1:44 UTC (permalink / raw)
To: ffmpeg-devel
Hello,
On Tue, 20 Feb 2024, at 05:48, wenbin.chen-at-intel.com@ffmpeg.org wrote:
> From: Wenbin Chen <wenbin.chen@intel.com>
>
> PyTorch is an open source machine learning framework that accelerates
OK for me
> the path from research prototyping to production deployment. Official
> websit: https://pytorch.org/. We call the C++ library of PyTorch as
websitE
> LibTorch, the same below.
>
> To build FFmpeg with LibTorch, please take following steps as reference:
> 1. download LibTorch C++ library in
> https://pytorch.org/get-started/locally/,
> please select C++/Java for language, and other options as your need.
> 2. unzip the file to your own dir, with command
> unzip libtorch-shared-with-deps-latest.zip -d your_dir
> 3. export libtorch_root/libtorch/include and
> libtorch_root/libtorch/include/torch/csrc/api/include to $PATH
> export libtorch_root/libtorch/lib/ to $LD_LIBRARY_PATH
> 4. config FFmpeg with ../configure --enable-libtorch
> --extra-cflag=-I/libtorch_root/libtorch/include
> --extra-cflag=-I/libtorch_root/libtorch/include/torch/csrc/api/include
> --extra-ldflags=-L/libtorch_root/libtorch/lib/
> 5. make
>
> To run FFmpeg DNN inference with LibTorch backend:
> ./ffmpeg -i input.jpg -vf
> dnn_processing=dnn_backend=torch:model=LibTorch_model.pt -y output.jpg
> The LibTorch_model.pt can be generated by Python with
> torch.jit.script() api. Please note, torch.jit.trace() is not
> recommanded, since it does not support ambiguous input size.
>
> Signed-off-by: Ting Fu <ting.fu@intel.com>
> Signed-off-by: Wenbin Chen <wenbin.chen@intel.com>
> ---
> configure | 5 +-
> libavfilter/dnn/Makefile | 1 +
> libavfilter/dnn/dnn_backend_torch.cpp | 597 ++++++++++++++++++++++++++
> libavfilter/dnn/dnn_interface.c | 5 +
> libavfilter/dnn_filter_common.c | 15 +-
> libavfilter/dnn_interface.h | 2 +-
> libavfilter/vf_dnn_processing.c | 3 +
> 7 files changed, 624 insertions(+), 4 deletions(-)
> create mode 100644 libavfilter/dnn/dnn_backend_torch.cpp
>
> diff --git a/configure b/configure
> index 2c635043dd..450ef54a80 100755
> --- a/configure
> +++ b/configure
> @@ -279,6 +279,7 @@ External library support:
> --enable-libtheora enable Theora encoding via libtheora [no]
> --enable-libtls enable LibreSSL (via libtls), needed for
> https support
> if openssl, gnutls or mbedtls is not used
> [no]
> + --enable-libtorch enable Torch as one DNN backend [no]
> --enable-libtwolame enable MP2 encoding via libtwolame [no]
> --enable-libuavs3d enable AVS3 decoding via libuavs3d [no]
> --enable-libv4l2 enable libv4l2/v4l-utils [no]
> @@ -1901,6 +1902,7 @@ EXTERNAL_LIBRARY_LIST="
> libtensorflow
> libtesseract
> libtheora
> + libtorch
> libtwolame
> libuavs3d
> libv4l2
> @@ -2781,7 +2783,7 @@ cbs_vp9_select="cbs"
> deflate_wrapper_deps="zlib"
> dirac_parse_select="golomb"
> dovi_rpu_select="golomb"
> -dnn_suggest="libtensorflow libopenvino"
> +dnn_suggest="libtensorflow libopenvino libtorch"
> dnn_deps="avformat swscale"
> error_resilience_select="me_cmp"
> evcparse_select="golomb"
> @@ -6886,6 +6888,7 @@ enabled libtensorflow && require
> libtensorflow tensorflow/c/c_api.h TF_Versi
> enabled libtesseract && require_pkg_config libtesseract tesseract
> tesseract/capi.h TessBaseAPICreate
> enabled libtheora && require libtheora theora/theoraenc.h
> th_info_init -ltheoraenc -ltheoradec -logg
> enabled libtls && require_pkg_config libtls libtls tls.h
> tls_configure
> +enabled libtorch && check_cxxflags -std=c++14 && require_cpp
> libtorch torch/torch.h "torch::Tensor" -ltorch -lc10 -ltorch_cpu
> -lstdc++ -lpthread
> enabled libtwolame && require libtwolame twolame.h twolame_init
> -ltwolame &&
> { check_lib libtwolame twolame.h
> twolame_encode_buffer_float32_interleaved -ltwolame ||
> die "ERROR: libtwolame must be
> installed and version must be >= 0.3.10"; }
> diff --git a/libavfilter/dnn/Makefile b/libavfilter/dnn/Makefile
> index 5d5697ea42..3d09927c98 100644
> --- a/libavfilter/dnn/Makefile
> +++ b/libavfilter/dnn/Makefile
> @@ -6,5 +6,6 @@ OBJS-$(CONFIG_DNN) +=
> dnn/dnn_backend_common.o
>
> DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o
> DNN-OBJS-$(CONFIG_LIBOPENVINO) += dnn/dnn_backend_openvino.o
> +DNN-OBJS-$(CONFIG_LIBTORCH) += dnn/dnn_backend_torch.o
>
> OBJS-$(CONFIG_DNN) += $(DNN-OBJS-yes)
> diff --git a/libavfilter/dnn/dnn_backend_torch.cpp
> b/libavfilter/dnn/dnn_backend_torch.cpp
> new file mode 100644
> index 0000000000..54d3b309a1
> --- /dev/null
> +++ b/libavfilter/dnn/dnn_backend_torch.cpp
> @@ -0,0 +1,597 @@
> +/*
> + * Copyright (c) 2024
> + *
> + * This file is part of FFmpeg.
> + *
> + * FFmpeg is free software; you can redistribute it and/or
> + * modify it under the terms of the GNU Lesser General Public
> + * License as published by the Free Software Foundation; either
> + * version 2.1 of the License, or (at your option) any later version.
> + *
> + * FFmpeg is distributed in the hope that it will be useful,
> + * but WITHOUT ANY WARRANTY; without even the implied warranty of
> + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
> + * Lesser General Public License for more details.
> + *
> + * You should have received a copy of the GNU Lesser General Public
> + * License along with FFmpeg; if not, write to the Free Software
> + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
> 02110-1301 USA
> + */
> +
> +/**
> + * @file
> + * DNN Torch backend implementation.
> + */
> +
> +#include <torch/torch.h>
> +#include <torch/script.h>
> +
> +extern "C" {
> +#include "../internal.h"
> +#include "dnn_io_proc.h"
> +#include "dnn_backend_common.h"
> +#include "libavutil/opt.h"
> +#include "queue.h"
> +#include "safe_queue.h"
> +}
> +
> +typedef struct THOptions{
> + char *device_name;
> + int optimize;
> +} THOptions;
> +
> +typedef struct THContext {
> + const AVClass *c_class;
> + THOptions options;
> +} THContext;
> +
> +typedef struct THModel {
> + THContext ctx;
> + DNNModel *model;
> + torch::jit::Module *jit_model;
> + SafeQueue *request_queue;
> + Queue *task_queue;
> + Queue *lltask_queue;
> +} THModel;
> +
> +typedef struct THInferRequest {
> + torch::Tensor *output;
> + torch::Tensor *input_tensor;
> +} THInferRequest;
> +
> +typedef struct THRequestItem {
> + THInferRequest *infer_request;
> + LastLevelTaskItem *lltask;
> + DNNAsyncExecModule exec_module;
> +} THRequestItem;
> +
> +
> +#define OFFSET(x) offsetof(THContext, x)
> +#define FLAGS AV_OPT_FLAG_FILTERING_PARAM
> +static const AVOption dnn_th_options[] = {
> + { "device", "device to run model", OFFSET(options.device_name),
> AV_OPT_TYPE_STRING, { .str = "cpu" }, 0, 0, FLAGS },
> + { "optimize", "turn on graph executor optimization",
> OFFSET(options.optimize), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS},
> + { NULL }
> +};
> +
> +AVFILTER_DEFINE_CLASS(dnn_th);
> +
> +static int extract_lltask_from_task(TaskItem *task, Queue
> *lltask_queue)
> +{
> + THModel *th_model = (THModel *)task->model;
> + THContext *ctx = &th_model->ctx;
> + LastLevelTaskItem *lltask = (LastLevelTaskItem
> *)av_malloc(sizeof(*lltask));
> + if (!lltask) {
> + av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for
> LastLevelTaskItem\n");
> + return AVERROR(ENOMEM);
> + }
> + task->inference_todo = 1;
> + task->inference_done = 0;
> + lltask->task = task;
> + if (ff_queue_push_back(lltask_queue, lltask) < 0) {
> + av_log(ctx, AV_LOG_ERROR, "Failed to push back
> lltask_queue.\n");
> + av_freep(&lltask);
> + return AVERROR(ENOMEM);
> + }
> + return 0;
> +}
> +
> +static void th_free_request(THInferRequest *request)
> +{
> + if (!request)
> + return;
> + if (request->output) {
> + delete(request->output);
> + request->output = NULL;
> + }
> + if (request->input_tensor) {
> + delete(request->input_tensor);
> + request->input_tensor = NULL;
> + }
> + return;
> +}
> +
> +static inline void destroy_request_item(THRequestItem **arg)
> +{
> + THRequestItem *item;
> + if (!arg || !*arg) {
> + return;
> + }
> + item = *arg;
> + th_free_request(item->infer_request);
> + av_freep(&item->infer_request);
> + av_freep(&item->lltask);
> + ff_dnn_async_module_cleanup(&item->exec_module);
> + av_freep(arg);
> +}
> +
> +static void dnn_free_model_th(DNNModel **model)
> +{
> + THModel *th_model;
> + if (!model || !*model)
> + return;
> +
> + th_model = (THModel *) (*model)->model;
> + while (ff_safe_queue_size(th_model->request_queue) != 0) {
> + THRequestItem *item = (THRequestItem
> *)ff_safe_queue_pop_front(th_model->request_queue);
> + destroy_request_item(&item);
> + }
> + ff_safe_queue_destroy(th_model->request_queue);
> +
> + while (ff_queue_size(th_model->lltask_queue) != 0) {
> + LastLevelTaskItem *item = (LastLevelTaskItem
> *)ff_queue_pop_front(th_model->lltask_queue);
> + av_freep(&item);
> + }
> + ff_queue_destroy(th_model->lltask_queue);
> +
> + while (ff_queue_size(th_model->task_queue) != 0) {
> + TaskItem *item = (TaskItem
> *)ff_queue_pop_front(th_model->task_queue);
> + av_frame_free(&item->in_frame);
> + av_frame_free(&item->out_frame);
> + av_freep(&item);
> + }
> + ff_queue_destroy(th_model->task_queue);
> + delete th_model->jit_model;
> + av_opt_free(&th_model->ctx);
> + av_freep(&th_model);
> + av_freep(model);
> +}
> +
> +static int get_input_th(void *model, DNNData *input, const char
> *input_name)
> +{
> + input->dt = DNN_FLOAT;
> + input->order = DCO_RGB;
> + input->layout = DL_NCHW;
> + input->dims[0] = 1;
> + input->dims[1] = 3;
> + input->dims[2] = -1;
> + input->dims[3] = -1;
> + return 0;
> +}
> +
> +static void deleter(void *arg)
> +{
> + av_freep(&arg);
> +}
> +
> +static int fill_model_input_th(THModel *th_model, THRequestItem
> *request)
> +{
> + LastLevelTaskItem *lltask = NULL;
> + TaskItem *task = NULL;
> + THInferRequest *infer_request = NULL;
> + DNNData input = { 0 };
> + THContext *ctx = &th_model->ctx;
> + int ret, width_idx, height_idx, channel_idx;
> +
> + lltask = (LastLevelTaskItem
> *)ff_queue_pop_front(th_model->lltask_queue);
> + if (!lltask) {
> + ret = AVERROR(EINVAL);
> + goto err;
> + }
> + request->lltask = lltask;
> + task = lltask->task;
> + infer_request = request->infer_request;
> +
> + ret = get_input_th(th_model, &input, NULL);
> + if ( ret != 0) {
> + goto err;
> + }
> + width_idx = dnn_get_width_idx_by_layout(input.layout);
> + height_idx = dnn_get_height_idx_by_layout(input.layout);
> + channel_idx = dnn_get_channel_idx_by_layout(input.layout);
> + input.dims[height_idx] = task->in_frame->height;
> + input.dims[width_idx] = task->in_frame->width;
> + input.data = av_malloc(input.dims[height_idx] *
> input.dims[width_idx] *
> + input.dims[channel_idx] * sizeof(float));
> + if (!input.data)
> + return AVERROR(ENOMEM);
> + infer_request->input_tensor = new torch::Tensor();
> + infer_request->output = new torch::Tensor();
> +
> + switch (th_model->model->func_type) {
> + case DFT_PROCESS_FRAME:
> + input.scale = 255;
> + if (task->do_ioproc) {
> + if (th_model->model->frame_pre_proc != NULL) {
> + th_model->model->frame_pre_proc(task->in_frame,
> &input, th_model->model->filter_ctx);
> + } else {
> + ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx);
> + }
> + }
> + break;
> + default:
> + avpriv_report_missing_feature(NULL, "model function type %d",
> th_model->model->func_type);
> + break;
> + }
> + *infer_request->input_tensor = torch::from_blob(input.data,
> + {1, 1, input.dims[channel_idx], input.dims[height_idx],
> input.dims[width_idx]},
> + deleter, torch::kFloat32);
> + return 0;
> +
> +err:
> + th_free_request(infer_request);
> + return ret;
> +}
> +
> +static int th_start_inference(void *args)
> +{
> + THRequestItem *request = (THRequestItem *)args;
> + THInferRequest *infer_request = NULL;
> + LastLevelTaskItem *lltask = NULL;
> + TaskItem *task = NULL;
> + THModel *th_model = NULL;
> + THContext *ctx = NULL;
> + std::vector<torch::jit::IValue> inputs;
> + torch::NoGradGuard no_grad;
> +
> + if (!request) {
> + av_log(NULL, AV_LOG_ERROR, "THRequestItem is NULL\n");
> + return AVERROR(EINVAL);
> + }
> + infer_request = request->infer_request;
> + lltask = request->lltask;
> + task = lltask->task;
> + th_model = (THModel *)task->model;
> + ctx = &th_model->ctx;
> +
> + if (ctx->options.optimize)
> + torch::jit::setGraphExecutorOptimize(true);
> + else
> + torch::jit::setGraphExecutorOptimize(false);
> +
> + if (!infer_request->input_tensor || !infer_request->output) {
> + av_log(ctx, AV_LOG_ERROR, "input or output tensor is NULL\n");
> + return DNN_GENERIC_ERROR;
> + }
> + inputs.push_back(*infer_request->input_tensor);
> +
> + *infer_request->output =
> th_model->jit_model->forward(inputs).toTensor();
> +
> + return 0;
> +}
> +
> +static void infer_completion_callback(void *args) {
> + THRequestItem *request = (THRequestItem*)args;
> + LastLevelTaskItem *lltask = request->lltask;
> + TaskItem *task = lltask->task;
> + DNNData outputs = { 0 };
> + THInferRequest *infer_request = request->infer_request;
> + THModel *th_model = (THModel *)task->model;
> + torch::Tensor *output = infer_request->output;
> +
> + c10::IntArrayRef sizes = output->sizes();
> + outputs.order = DCO_RGB;
> + outputs.layout = DL_NCHW;
> + outputs.dt = DNN_FLOAT;
> + if (sizes.size() == 5) {
> + // 5 dimensions: [batch_size, frame_nubmer, channel, height,
> width]
> + // this format of data is normally used for video frame SR
> + outputs.dims[0] = sizes.at(0); // N
> + outputs.dims[1] = sizes.at(2); // C
> + outputs.dims[2] = sizes.at(3); // H
> + outputs.dims[3] = sizes.at(4); // W
> + } else {
> + avpriv_report_missing_feature(&th_model->ctx, "Support of this
> kind of model");
> + goto err;
> + }
> +
> + switch (th_model->model->func_type) {
> + case DFT_PROCESS_FRAME:
> + if (task->do_ioproc) {
> + outputs.scale = 255;
> + outputs.data = output->data_ptr();
> + if (th_model->model->frame_post_proc != NULL) {
> + th_model->model->frame_post_proc(task->out_frame,
> &outputs, th_model->model->filter_ctx);
> + } else {
> + ff_proc_from_dnn_to_frame(task->out_frame, &outputs,
> &th_model->ctx);
> + }
> + } else {
> + task->out_frame->width =
> outputs.dims[dnn_get_width_idx_by_layout(outputs.layout)];
> + task->out_frame->height =
> outputs.dims[dnn_get_height_idx_by_layout(outputs.layout)];
> + }
> + break;
> + default:
> + avpriv_report_missing_feature(&th_model->ctx, "model function
> type %d", th_model->model->func_type);
> + goto err;
> + }
> + task->inference_done++;
> + av_freep(&request->lltask);
> +err:
> + th_free_request(infer_request);
> +
> + if (ff_safe_queue_push_back(th_model->request_queue, request) < 0)
> {
> + destroy_request_item(&request);
> + av_log(&th_model->ctx, AV_LOG_ERROR, "Unable to push back
> request_queue when failed to start inference.\n");
> + }
> +}
> +
> +static int execute_model_th(THRequestItem *request, Queue
> *lltask_queue)
> +{
> + THModel *th_model = NULL;
> + LastLevelTaskItem *lltask;
> + TaskItem *task = NULL;
> + int ret = 0;
> +
> + if (ff_queue_size(lltask_queue) == 0) {
> + destroy_request_item(&request);
> + return 0;
> + }
> +
> + lltask = (LastLevelTaskItem *)ff_queue_peek_front(lltask_queue);
> + if (lltask == NULL) {
> + av_log(NULL, AV_LOG_ERROR, "Failed to get
> LastLevelTaskItem\n");
> + ret = AVERROR(EINVAL);
> + goto err;
> + }
> + task = lltask->task;
> + th_model = (THModel *)task->model;
> +
> + ret = fill_model_input_th(th_model, request);
> + if ( ret != 0) {
> + goto err;
> + }
> + if (task->async) {
> + avpriv_report_missing_feature(&th_model->ctx, "LibTorch
> async");
> + } else {
> + ret = th_start_inference((void *)(request));
> + if (ret != 0) {
> + goto err;
> + }
> + infer_completion_callback(request);
> + return (task->inference_done == task->inference_todo) ? 0 :
> DNN_GENERIC_ERROR;
> + }
> +
> +err:
> + th_free_request(request->infer_request);
> + if (ff_safe_queue_push_back(th_model->request_queue, request) < 0)
> {
> + destroy_request_item(&request);
> + }
> + return ret;
> +}
> +
> +static int get_output_th(void *model, const char *input_name, int
> input_width, int input_height,
> + const char *output_name, int
> *output_width, int *output_height)
> +{
> + int ret = 0;
> + THModel *th_model = (THModel*) model;
> + THContext *ctx = &th_model->ctx;
> + TaskItem task = { 0 };
> + THRequestItem *request = NULL;
> + DNNExecBaseParams exec_params = {
> + .input_name = input_name,
> + .output_names = &output_name,
> + .nb_output = 1,
> + .in_frame = NULL,
> + .out_frame = NULL,
> + };
> + ret = ff_dnn_fill_gettingoutput_task(&task, &exec_params,
> th_model, input_height, input_width, ctx);
> + if ( ret != 0) {
> + goto err;
> + }
> +
> + ret = extract_lltask_from_task(&task, th_model->lltask_queue);
> + if ( ret != 0) {
> + av_log(ctx, AV_LOG_ERROR, "unable to extract last level task
> from task.\n");
> + goto err;
> + }
> +
> + request = (THRequestItem*)
> ff_safe_queue_pop_front(th_model->request_queue);
> + if (!request) {
> + av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
> + ret = AVERROR(EINVAL);
> + goto err;
> + }
> +
> + ret = execute_model_th(request, th_model->lltask_queue);
> + *output_width = task.out_frame->width;
> + *output_height = task.out_frame->height;
> +
> +err:
> + av_frame_free(&task.out_frame);
> + av_frame_free(&task.in_frame);
> + return ret;
> +}
> +
> +static THInferRequest *th_create_inference_request(void)
> +{
> + THInferRequest *request = (THInferRequest
> *)av_malloc(sizeof(THInferRequest));
> + if (!request) {
> + return NULL;
> + }
> + request->input_tensor = NULL;
> + request->output = NULL;
> + return request;
> +}
> +
> +static DNNModel *dnn_load_model_th(const char *model_filename,
> DNNFunctionType func_type, const char *options, AVFilterContext
> *filter_ctx)
> +{
> + DNNModel *model = NULL;
> + THModel *th_model = NULL;
> + THRequestItem *item = NULL;
> + THContext *ctx;
> +
> + model = (DNNModel *)av_mallocz(sizeof(DNNModel));
> + if (!model) {
> + return NULL;
> + }
> +
> + th_model = (THModel *)av_mallocz(sizeof(THModel));
> + if (!th_model) {
> + av_freep(&model);
> + return NULL;
> + }
> + th_model->model = model;
> + model->model = th_model;
> + th_model->ctx.c_class = &dnn_th_class;
> + ctx = &th_model->ctx;
> + //parse options
> + av_opt_set_defaults(ctx);
> + if (av_opt_set_from_string(ctx, options, NULL, "=", "&") < 0) {
> + av_log(ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n",
> options);
> + return NULL;
> + }
> +
> + c10::Device device = c10::Device(ctx->options.device_name);
> + if (!device.is_cpu()) {
> + av_log(ctx, AV_LOG_ERROR, "Not supported device:\"%s\"\n",
> ctx->options.device_name);
> + goto fail;
> + }
> +
> + try {
> + th_model->jit_model = new torch::jit::Module;
> + (*th_model->jit_model) = torch::jit::load(model_filename);
> + } catch (const c10::Error& e) {
> + av_log(ctx, AV_LOG_ERROR, "Failed to load torch model\n");
> + goto fail;
> + }
> +
> + th_model->request_queue = ff_safe_queue_create();
> + if (!th_model->request_queue) {
> + goto fail;
> + }
> +
> + item = (THRequestItem *)av_mallocz(sizeof(THRequestItem));
> + if (!item) {
> + goto fail;
> + }
> + item->lltask = NULL;
> + item->infer_request = th_create_inference_request();
> + if (!item->infer_request) {
> + av_log(NULL, AV_LOG_ERROR, "Failed to allocate memory for
> Torch inference request\n");
> + goto fail;
> + }
> + item->exec_module.start_inference = &th_start_inference;
> + item->exec_module.callback = &infer_completion_callback;
> + item->exec_module.args = item;
> +
> + if (ff_safe_queue_push_back(th_model->request_queue, item) < 0) {
> + goto fail;
> + }
> + item = NULL;
> +
> + th_model->task_queue = ff_queue_create();
> + if (!th_model->task_queue) {
> + goto fail;
> + }
> +
> + th_model->lltask_queue = ff_queue_create();
> + if (!th_model->lltask_queue) {
> + goto fail;
> + }
> +
> + model->get_input = &get_input_th;
> + model->get_output = &get_output_th;
> + model->options = NULL;
> + model->filter_ctx = filter_ctx;
> + model->func_type = func_type;
> + return model;
> +
> +fail:
> + if (item) {
> + destroy_request_item(&item);
> + av_freep(&item);
> + }
> + dnn_free_model_th(&model);
> + return NULL;
> +}
> +
> +static int dnn_execute_model_th(const DNNModel *model,
> DNNExecBaseParams *exec_params)
> +{
> + THModel *th_model = (THModel *)model->model;
> + THContext *ctx = &th_model->ctx;
> + TaskItem *task;
> + THRequestItem *request;
> + int ret = 0;
> +
> + ret = ff_check_exec_params(ctx, DNN_TH, model->func_type,
> exec_params);
> + if (ret != 0) {
> + av_log(ctx, AV_LOG_ERROR, "exec parameter checking fail.\n");
> + return ret;
> + }
> +
> + task = (TaskItem *)av_malloc(sizeof(TaskItem));
> + if (!task) {
> + av_log(ctx, AV_LOG_ERROR, "unable to alloc memory for task
> item.\n");
> + return AVERROR(ENOMEM);
> + }
> +
> + ret = ff_dnn_fill_task(task, exec_params, th_model, 0, 1);
> + if (ret != 0) {
> + av_freep(&task);
> + av_log(ctx, AV_LOG_ERROR, "unable to fill task.\n");
> + return ret;
> + }
> +
> + ret = ff_queue_push_back(th_model->task_queue, task);
> + if (ret < 0) {
> + av_freep(&task);
> + av_log(ctx, AV_LOG_ERROR, "unable to push back task_queue.\n");
> + return ret;
> + }
> +
> + ret = extract_lltask_from_task(task, th_model->lltask_queue);
> + if (ret != 0) {
> + av_log(ctx, AV_LOG_ERROR, "unable to extract last level task
> from task.\n");
> + return ret;
> + }
> +
> + request = (THRequestItem
> *)ff_safe_queue_pop_front(th_model->request_queue);
> + if (!request) {
> + av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
> + return AVERROR(EINVAL);
> + }
> +
> + return execute_model_th(request, th_model->lltask_queue);
> +}
> +
> +static DNNAsyncStatusType dnn_get_result_th(const DNNModel *model,
> AVFrame **in, AVFrame **out)
> +{
> + THModel *th_model = (THModel *)model->model;
> + return ff_dnn_get_result_common(th_model->task_queue, in, out);
> +}
> +
> +static int dnn_flush_th(const DNNModel *model)
> +{
> + THModel *th_model = (THModel *)model->model;
> + THRequestItem *request;
> +
> + if (ff_queue_size(th_model->lltask_queue) == 0)
> + // no pending task need to flush
> + return 0;
> +
> + request = (THRequestItem
> *)ff_safe_queue_pop_front(th_model->request_queue);
> + if (!request) {
> + av_log(&th_model->ctx, AV_LOG_ERROR, "unable to get infer
> request.\n");
> + return AVERROR(EINVAL);
> + }
> +
> + return execute_model_th(request, th_model->lltask_queue);
> +}
> +
> +extern const DNNModule ff_dnn_backend_torch = {
> + .load_model = dnn_load_model_th,
> + .execute_model = dnn_execute_model_th,
> + .get_result = dnn_get_result_th,
> + .flush = dnn_flush_th,
> + .free_model = dnn_free_model_th,
> +};
> diff --git a/libavfilter/dnn/dnn_interface.c
> b/libavfilter/dnn/dnn_interface.c
> index e843826aa6..b9f71aea53 100644
> --- a/libavfilter/dnn/dnn_interface.c
> +++ b/libavfilter/dnn/dnn_interface.c
> @@ -28,6 +28,7 @@
>
> extern const DNNModule ff_dnn_backend_openvino;
> extern const DNNModule ff_dnn_backend_tf;
> +extern const DNNModule ff_dnn_backend_torch;
>
> const DNNModule *ff_get_dnn_module(DNNBackendType backend_type, void
> *log_ctx)
> {
> @@ -40,6 +41,10 @@ const DNNModule *ff_get_dnn_module(DNNBackendType
> backend_type, void *log_ctx)
> case DNN_OV:
> return &ff_dnn_backend_openvino;
> #endif
> + #if (CONFIG_LIBTORCH == 1)
> + case DNN_TH:
> + return &ff_dnn_backend_torch;
> + #endif
> default:
> av_log(log_ctx, AV_LOG_ERROR,
> "Module backend_type %d is not supported or
> enabled.\n",
> diff --git a/libavfilter/dnn_filter_common.c
> b/libavfilter/dnn_filter_common.c
> index f012d450a2..7d194c9ade 100644
> --- a/libavfilter/dnn_filter_common.c
> +++ b/libavfilter/dnn_filter_common.c
> @@ -53,12 +53,22 @@ static char **separate_output_names(const char
> *expr, const char *val_sep, int *
>
> int ff_dnn_init(DnnContext *ctx, DNNFunctionType func_type,
> AVFilterContext *filter_ctx)
> {
> + DNNBackendType backend = ctx->backend_type;
> +
> if (!ctx->model_filename) {
> av_log(filter_ctx, AV_LOG_ERROR, "model file for network is
> not specified\n");
> return AVERROR(EINVAL);
> }
>
> - if (ctx->backend_type == DNN_TF) {
> + if (backend == DNN_TH) {
> + if (ctx->model_inputname)
> + av_log(filter_ctx, AV_LOG_WARNING, "LibTorch backend do
> not require inputname, "\
> + "inputname will be
> ignored.\n");
> + if (ctx->model_outputnames)
> + av_log(filter_ctx, AV_LOG_WARNING, "LibTorch backend do
> not require outputname(s), "\
> + "all outputname(s) will
> be ignored.\n");
> + ctx->nb_outputs = 1;
> + } else if (backend == DNN_TF) {
> if (!ctx->model_inputname) {
> av_log(filter_ctx, AV_LOG_ERROR, "input name of the model
> network is not specified\n");
> return AVERROR(EINVAL);
> @@ -115,7 +125,8 @@ int ff_dnn_get_input(DnnContext *ctx, DNNData
> *input)
>
> int ff_dnn_get_output(DnnContext *ctx, int input_width, int
> input_height, int *output_width, int *output_height)
> {
> - char * output_name = ctx->model_outputnames ?
> ctx->model_outputnames[0] : NULL;
> + char * output_name = ctx->model_outputnames && ctx->backend_type
> != DNN_TH ?
> + ctx->model_outputnames[0] : NULL;
> return ctx->model->get_output(ctx->model->model,
> ctx->model_inputname, input_width, input_height,
> (const char *)output_name,
> output_width, output_height);
> }
> diff --git a/libavfilter/dnn_interface.h b/libavfilter/dnn_interface.h
> index 852d88baa8..63f492e690 100644
> --- a/libavfilter/dnn_interface.h
> +++ b/libavfilter/dnn_interface.h
> @@ -32,7 +32,7 @@
>
> #define DNN_GENERIC_ERROR FFERRTAG('D','N','N','!')
>
> -typedef enum {DNN_TF = 1, DNN_OV} DNNBackendType;
> +typedef enum {DNN_TF = 1, DNN_OV, DNN_TH} DNNBackendType;
>
> typedef enum {DNN_FLOAT = 1, DNN_UINT8 = 4} DNNDataType;
>
> diff --git a/libavfilter/vf_dnn_processing.c
> b/libavfilter/vf_dnn_processing.c
> index e7d21eef32..fdac31665e 100644
> --- a/libavfilter/vf_dnn_processing.c
> +++ b/libavfilter/vf_dnn_processing.c
> @@ -50,6 +50,9 @@ static const AVOption dnn_processing_options[] = {
> #endif
> #if (CONFIG_LIBOPENVINO == 1)
> { "openvino", "openvino backend flag", 0,
> AV_OPT_TYPE_CONST, { .i64 = DNN_OV }, 0, 0, FLAGS, .unit =
> "backend" },
> +#endif
> +#if (CONFIG_LIBTORCH == 1)
> + { "torch", "torch backend flag", 0,
> AV_OPT_TYPE_CONST, { .i64 = DNN_TH }, 0, 0, FLAGS,
> "backend" },
> #endif
> DNN_COMMON_OPTIONS
> { NULL }
> --
> 2.34.1
>
> _______________________________________________
> ffmpeg-devel mailing list
> ffmpeg-devel@ffmpeg.org
> https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
>
> To unsubscribe, visit link above, or email
> ffmpeg-devel-request@ffmpeg.org with subject "unsubscribe".
--
Jean-Baptiste Kempf - President
+33 672 704 734
_______________________________________________
ffmpeg-devel mailing list
ffmpeg-devel@ffmpeg.org
https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
To unsubscribe, visit link above, or email
ffmpeg-devel-request@ffmpeg.org with subject "unsubscribe".
^ permalink raw reply [flat|nested] 3+ messages in thread
* Re: [FFmpeg-devel] [PATCH v3] libavfi/dnn: add LibTorch as one of DNN backend
2024-02-21 1:44 ` Jean-Baptiste Kempf
@ 2024-02-21 3:08 ` Chen, Wenbin
0 siblings, 0 replies; 3+ messages in thread
From: Chen, Wenbin @ 2024-02-21 3:08 UTC (permalink / raw)
To: FFmpeg development discussions and patches
> Hello,
>
> On Tue, 20 Feb 2024, at 05:48, wenbin.chen-at-intel.com@ffmpeg.org wrote:
> > From: Wenbin Chen <wenbin.chen@intel.com>
> >
> > PyTorch is an open source machine learning framework that accelerates
>
> OK for me
>
> > the path from research prototyping to production deployment. Official
> > websit: https://pytorch.org/. We call the C++ library of PyTorch as
>
> websitE
Fixed in Patch v4. Thanks
Wenbin
>
> > LibTorch, the same below.
> >
> > To build FFmpeg with LibTorch, please take following steps as reference:
> > 1. download LibTorch C++ library in
> > https://pytorch.org/get-started/locally/,
> > please select C++/Java for language, and other options as your need.
> > 2. unzip the file to your own dir, with command
> > unzip libtorch-shared-with-deps-latest.zip -d your_dir
> > 3. export libtorch_root/libtorch/include and
> > libtorch_root/libtorch/include/torch/csrc/api/include to $PATH
> > export libtorch_root/libtorch/lib/ to $LD_LIBRARY_PATH
> > 4. config FFmpeg with ../configure --enable-libtorch
> > --extra-cflag=-I/libtorch_root/libtorch/include
> > --extra-cflag=-I/libtorch_root/libtorch/include/torch/csrc/api/include
> > --extra-ldflags=-L/libtorch_root/libtorch/lib/
> > 5. make
> >
> > To run FFmpeg DNN inference with LibTorch backend:
> > ./ffmpeg -i input.jpg -vf
> > dnn_processing=dnn_backend=torch:model=LibTorch_model.pt -y
> output.jpg
> > The LibTorch_model.pt can be generated by Python with
> > torch.jit.script() api. Please note, torch.jit.trace() is not
> > recommanded, since it does not support ambiguous input size.
> >
> > Signed-off-by: Ting Fu <ting.fu@intel.com>
> > Signed-off-by: Wenbin Chen <wenbin.chen@intel.com>
> > ---
> > configure | 5 +-
> > libavfilter/dnn/Makefile | 1 +
> > libavfilter/dnn/dnn_backend_torch.cpp | 597
> ++++++++++++++++++++++++++
> > libavfilter/dnn/dnn_interface.c | 5 +
> > libavfilter/dnn_filter_common.c | 15 +-
> > libavfilter/dnn_interface.h | 2 +-
> > libavfilter/vf_dnn_processing.c | 3 +
> > 7 files changed, 624 insertions(+), 4 deletions(-)
> > create mode 100644 libavfilter/dnn/dnn_backend_torch.cpp
> >
> > diff --git a/configure b/configure
> > index 2c635043dd..450ef54a80 100755
> > --- a/configure
> > +++ b/configure
> > @@ -279,6 +279,7 @@ External library support:
> > --enable-libtheora enable Theora encoding via libtheora [no]
> > --enable-libtls enable LibreSSL (via libtls), needed for
> > https support
> > if openssl, gnutls or mbedtls is not used
> > [no]
> > + --enable-libtorch enable Torch as one DNN backend [no]
> > --enable-libtwolame enable MP2 encoding via libtwolame [no]
> > --enable-libuavs3d enable AVS3 decoding via libuavs3d [no]
> > --enable-libv4l2 enable libv4l2/v4l-utils [no]
> > @@ -1901,6 +1902,7 @@ EXTERNAL_LIBRARY_LIST="
> > libtensorflow
> > libtesseract
> > libtheora
> > + libtorch
> > libtwolame
> > libuavs3d
> > libv4l2
> > @@ -2781,7 +2783,7 @@ cbs_vp9_select="cbs"
> > deflate_wrapper_deps="zlib"
> > dirac_parse_select="golomb"
> > dovi_rpu_select="golomb"
> > -dnn_suggest="libtensorflow libopenvino"
> > +dnn_suggest="libtensorflow libopenvino libtorch"
> > dnn_deps="avformat swscale"
> > error_resilience_select="me_cmp"
> > evcparse_select="golomb"
> > @@ -6886,6 +6888,7 @@ enabled libtensorflow && require
> > libtensorflow tensorflow/c/c_api.h TF_Versi
> > enabled libtesseract && require_pkg_config libtesseract tesseract
> > tesseract/capi.h TessBaseAPICreate
> > enabled libtheora && require libtheora theora/theoraenc.h
> > th_info_init -ltheoraenc -ltheoradec -logg
> > enabled libtls && require_pkg_config libtls libtls tls.h
> > tls_configure
> > +enabled libtorch && check_cxxflags -std=c++14 && require_cpp
> > libtorch torch/torch.h "torch::Tensor" -ltorch -lc10 -ltorch_cpu
> > -lstdc++ -lpthread
> > enabled libtwolame && require libtwolame twolame.h twolame_init
> > -ltwolame &&
> > { check_lib libtwolame twolame.h
> > twolame_encode_buffer_float32_interleaved -ltwolame ||
> > die "ERROR: libtwolame must be
> > installed and version must be >= 0.3.10"; }
> > diff --git a/libavfilter/dnn/Makefile b/libavfilter/dnn/Makefile
> > index 5d5697ea42..3d09927c98 100644
> > --- a/libavfilter/dnn/Makefile
> > +++ b/libavfilter/dnn/Makefile
> > @@ -6,5 +6,6 @@ OBJS-$(CONFIG_DNN) +=
> > dnn/dnn_backend_common.o
> >
> > DNN-OBJS-$(CONFIG_LIBTENSORFLOW) += dnn/dnn_backend_tf.o
> > DNN-OBJS-$(CONFIG_LIBOPENVINO) +=
> dnn/dnn_backend_openvino.o
> > +DNN-OBJS-$(CONFIG_LIBTORCH) += dnn/dnn_backend_torch.o
> >
> > OBJS-$(CONFIG_DNN) += $(DNN-OBJS-yes)
> > diff --git a/libavfilter/dnn/dnn_backend_torch.cpp
> > b/libavfilter/dnn/dnn_backend_torch.cpp
> > new file mode 100644
> > index 0000000000..54d3b309a1
> > --- /dev/null
> > +++ b/libavfilter/dnn/dnn_backend_torch.cpp
> > @@ -0,0 +1,597 @@
> > +/*
> > + * Copyright (c) 2024
> > + *
> > + * This file is part of FFmpeg.
> > + *
> > + * FFmpeg is free software; you can redistribute it and/or
> > + * modify it under the terms of the GNU Lesser General Public
> > + * License as published by the Free Software Foundation; either
> > + * version 2.1 of the License, or (at your option) any later version.
> > + *
> > + * FFmpeg is distributed in the hope that it will be useful,
> > + * but WITHOUT ANY WARRANTY; without even the implied warranty of
> > + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
> GNU
> > + * Lesser General Public License for more details.
> > + *
> > + * You should have received a copy of the GNU Lesser General Public
> > + * License along with FFmpeg; if not, write to the Free Software
> > + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
> > 02110-1301 USA
> > + */
> > +
> > +/**
> > + * @file
> > + * DNN Torch backend implementation.
> > + */
> > +
> > +#include <torch/torch.h>
> > +#include <torch/script.h>
> > +
> > +extern "C" {
> > +#include "../internal.h"
> > +#include "dnn_io_proc.h"
> > +#include "dnn_backend_common.h"
> > +#include "libavutil/opt.h"
> > +#include "queue.h"
> > +#include "safe_queue.h"
> > +}
> > +
> > +typedef struct THOptions{
> > + char *device_name;
> > + int optimize;
> > +} THOptions;
> > +
> > +typedef struct THContext {
> > + const AVClass *c_class;
> > + THOptions options;
> > +} THContext;
> > +
> > +typedef struct THModel {
> > + THContext ctx;
> > + DNNModel *model;
> > + torch::jit::Module *jit_model;
> > + SafeQueue *request_queue;
> > + Queue *task_queue;
> > + Queue *lltask_queue;
> > +} THModel;
> > +
> > +typedef struct THInferRequest {
> > + torch::Tensor *output;
> > + torch::Tensor *input_tensor;
> > +} THInferRequest;
> > +
> > +typedef struct THRequestItem {
> > + THInferRequest *infer_request;
> > + LastLevelTaskItem *lltask;
> > + DNNAsyncExecModule exec_module;
> > +} THRequestItem;
> > +
> > +
> > +#define OFFSET(x) offsetof(THContext, x)
> > +#define FLAGS AV_OPT_FLAG_FILTERING_PARAM
> > +static const AVOption dnn_th_options[] = {
> > + { "device", "device to run model", OFFSET(options.device_name),
> > AV_OPT_TYPE_STRING, { .str = "cpu" }, 0, 0, FLAGS },
> > + { "optimize", "turn on graph executor optimization",
> > OFFSET(options.optimize), AV_OPT_TYPE_INT, { .i64 = 0 }, 0, 1, FLAGS},
> > + { NULL }
> > +};
> > +
> > +AVFILTER_DEFINE_CLASS(dnn_th);
> > +
> > +static int extract_lltask_from_task(TaskItem *task, Queue
> > *lltask_queue)
> > +{
> > + THModel *th_model = (THModel *)task->model;
> > + THContext *ctx = &th_model->ctx;
> > + LastLevelTaskItem *lltask = (LastLevelTaskItem
> > *)av_malloc(sizeof(*lltask));
> > + if (!lltask) {
> > + av_log(ctx, AV_LOG_ERROR, "Failed to allocate memory for
> > LastLevelTaskItem\n");
> > + return AVERROR(ENOMEM);
> > + }
> > + task->inference_todo = 1;
> > + task->inference_done = 0;
> > + lltask->task = task;
> > + if (ff_queue_push_back(lltask_queue, lltask) < 0) {
> > + av_log(ctx, AV_LOG_ERROR, "Failed to push back
> > lltask_queue.\n");
> > + av_freep(&lltask);
> > + return AVERROR(ENOMEM);
> > + }
> > + return 0;
> > +}
> > +
> > +static void th_free_request(THInferRequest *request)
> > +{
> > + if (!request)
> > + return;
> > + if (request->output) {
> > + delete(request->output);
> > + request->output = NULL;
> > + }
> > + if (request->input_tensor) {
> > + delete(request->input_tensor);
> > + request->input_tensor = NULL;
> > + }
> > + return;
> > +}
> > +
> > +static inline void destroy_request_item(THRequestItem **arg)
> > +{
> > + THRequestItem *item;
> > + if (!arg || !*arg) {
> > + return;
> > + }
> > + item = *arg;
> > + th_free_request(item->infer_request);
> > + av_freep(&item->infer_request);
> > + av_freep(&item->lltask);
> > + ff_dnn_async_module_cleanup(&item->exec_module);
> > + av_freep(arg);
> > +}
> > +
> > +static void dnn_free_model_th(DNNModel **model)
> > +{
> > + THModel *th_model;
> > + if (!model || !*model)
> > + return;
> > +
> > + th_model = (THModel *) (*model)->model;
> > + while (ff_safe_queue_size(th_model->request_queue) != 0) {
> > + THRequestItem *item = (THRequestItem
> > *)ff_safe_queue_pop_front(th_model->request_queue);
> > + destroy_request_item(&item);
> > + }
> > + ff_safe_queue_destroy(th_model->request_queue);
> > +
> > + while (ff_queue_size(th_model->lltask_queue) != 0) {
> > + LastLevelTaskItem *item = (LastLevelTaskItem
> > *)ff_queue_pop_front(th_model->lltask_queue);
> > + av_freep(&item);
> > + }
> > + ff_queue_destroy(th_model->lltask_queue);
> > +
> > + while (ff_queue_size(th_model->task_queue) != 0) {
> > + TaskItem *item = (TaskItem
> > *)ff_queue_pop_front(th_model->task_queue);
> > + av_frame_free(&item->in_frame);
> > + av_frame_free(&item->out_frame);
> > + av_freep(&item);
> > + }
> > + ff_queue_destroy(th_model->task_queue);
> > + delete th_model->jit_model;
> > + av_opt_free(&th_model->ctx);
> > + av_freep(&th_model);
> > + av_freep(model);
> > +}
> > +
> > +static int get_input_th(void *model, DNNData *input, const char
> > *input_name)
> > +{
> > + input->dt = DNN_FLOAT;
> > + input->order = DCO_RGB;
> > + input->layout = DL_NCHW;
> > + input->dims[0] = 1;
> > + input->dims[1] = 3;
> > + input->dims[2] = -1;
> > + input->dims[3] = -1;
> > + return 0;
> > +}
> > +
> > +static void deleter(void *arg)
> > +{
> > + av_freep(&arg);
> > +}
> > +
> > +static int fill_model_input_th(THModel *th_model, THRequestItem
> > *request)
> > +{
> > + LastLevelTaskItem *lltask = NULL;
> > + TaskItem *task = NULL;
> > + THInferRequest *infer_request = NULL;
> > + DNNData input = { 0 };
> > + THContext *ctx = &th_model->ctx;
> > + int ret, width_idx, height_idx, channel_idx;
> > +
> > + lltask = (LastLevelTaskItem
> > *)ff_queue_pop_front(th_model->lltask_queue);
> > + if (!lltask) {
> > + ret = AVERROR(EINVAL);
> > + goto err;
> > + }
> > + request->lltask = lltask;
> > + task = lltask->task;
> > + infer_request = request->infer_request;
> > +
> > + ret = get_input_th(th_model, &input, NULL);
> > + if ( ret != 0) {
> > + goto err;
> > + }
> > + width_idx = dnn_get_width_idx_by_layout(input.layout);
> > + height_idx = dnn_get_height_idx_by_layout(input.layout);
> > + channel_idx = dnn_get_channel_idx_by_layout(input.layout);
> > + input.dims[height_idx] = task->in_frame->height;
> > + input.dims[width_idx] = task->in_frame->width;
> > + input.data = av_malloc(input.dims[height_idx] *
> > input.dims[width_idx] *
> > + input.dims[channel_idx] * sizeof(float));
> > + if (!input.data)
> > + return AVERROR(ENOMEM);
> > + infer_request->input_tensor = new torch::Tensor();
> > + infer_request->output = new torch::Tensor();
> > +
> > + switch (th_model->model->func_type) {
> > + case DFT_PROCESS_FRAME:
> > + input.scale = 255;
> > + if (task->do_ioproc) {
> > + if (th_model->model->frame_pre_proc != NULL) {
> > + th_model->model->frame_pre_proc(task->in_frame,
> > &input, th_model->model->filter_ctx);
> > + } else {
> > + ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx);
> > + }
> > + }
> > + break;
> > + default:
> > + avpriv_report_missing_feature(NULL, "model function type %d",
> > th_model->model->func_type);
> > + break;
> > + }
> > + *infer_request->input_tensor = torch::from_blob(input.data,
> > + {1, 1, input.dims[channel_idx], input.dims[height_idx],
> > input.dims[width_idx]},
> > + deleter, torch::kFloat32);
> > + return 0;
> > +
> > +err:
> > + th_free_request(infer_request);
> > + return ret;
> > +}
> > +
> > +static int th_start_inference(void *args)
> > +{
> > + THRequestItem *request = (THRequestItem *)args;
> > + THInferRequest *infer_request = NULL;
> > + LastLevelTaskItem *lltask = NULL;
> > + TaskItem *task = NULL;
> > + THModel *th_model = NULL;
> > + THContext *ctx = NULL;
> > + std::vector<torch::jit::IValue> inputs;
> > + torch::NoGradGuard no_grad;
> > +
> > + if (!request) {
> > + av_log(NULL, AV_LOG_ERROR, "THRequestItem is NULL\n");
> > + return AVERROR(EINVAL);
> > + }
> > + infer_request = request->infer_request;
> > + lltask = request->lltask;
> > + task = lltask->task;
> > + th_model = (THModel *)task->model;
> > + ctx = &th_model->ctx;
> > +
> > + if (ctx->options.optimize)
> > + torch::jit::setGraphExecutorOptimize(true);
> > + else
> > + torch::jit::setGraphExecutorOptimize(false);
> > +
> > + if (!infer_request->input_tensor || !infer_request->output) {
> > + av_log(ctx, AV_LOG_ERROR, "input or output tensor is NULL\n");
> > + return DNN_GENERIC_ERROR;
> > + }
> > + inputs.push_back(*infer_request->input_tensor);
> > +
> > + *infer_request->output =
> > th_model->jit_model->forward(inputs).toTensor();
> > +
> > + return 0;
> > +}
> > +
> > +static void infer_completion_callback(void *args) {
> > + THRequestItem *request = (THRequestItem*)args;
> > + LastLevelTaskItem *lltask = request->lltask;
> > + TaskItem *task = lltask->task;
> > + DNNData outputs = { 0 };
> > + THInferRequest *infer_request = request->infer_request;
> > + THModel *th_model = (THModel *)task->model;
> > + torch::Tensor *output = infer_request->output;
> > +
> > + c10::IntArrayRef sizes = output->sizes();
> > + outputs.order = DCO_RGB;
> > + outputs.layout = DL_NCHW;
> > + outputs.dt = DNN_FLOAT;
> > + if (sizes.size() == 5) {
> > + // 5 dimensions: [batch_size, frame_nubmer, channel, height,
> > width]
> > + // this format of data is normally used for video frame SR
> > + outputs.dims[0] = sizes.at(0); // N
> > + outputs.dims[1] = sizes.at(2); // C
> > + outputs.dims[2] = sizes.at(3); // H
> > + outputs.dims[3] = sizes.at(4); // W
> > + } else {
> > + avpriv_report_missing_feature(&th_model->ctx, "Support of this
> > kind of model");
> > + goto err;
> > + }
> > +
> > + switch (th_model->model->func_type) {
> > + case DFT_PROCESS_FRAME:
> > + if (task->do_ioproc) {
> > + outputs.scale = 255;
> > + outputs.data = output->data_ptr();
> > + if (th_model->model->frame_post_proc != NULL) {
> > + th_model->model->frame_post_proc(task->out_frame,
> > &outputs, th_model->model->filter_ctx);
> > + } else {
> > + ff_proc_from_dnn_to_frame(task->out_frame, &outputs,
> > &th_model->ctx);
> > + }
> > + } else {
> > + task->out_frame->width =
> > outputs.dims[dnn_get_width_idx_by_layout(outputs.layout)];
> > + task->out_frame->height =
> > outputs.dims[dnn_get_height_idx_by_layout(outputs.layout)];
> > + }
> > + break;
> > + default:
> > + avpriv_report_missing_feature(&th_model->ctx, "model function
> > type %d", th_model->model->func_type);
> > + goto err;
> > + }
> > + task->inference_done++;
> > + av_freep(&request->lltask);
> > +err:
> > + th_free_request(infer_request);
> > +
> > + if (ff_safe_queue_push_back(th_model->request_queue, request) < 0)
> > {
> > + destroy_request_item(&request);
> > + av_log(&th_model->ctx, AV_LOG_ERROR, "Unable to push back
> > request_queue when failed to start inference.\n");
> > + }
> > +}
> > +
> > +static int execute_model_th(THRequestItem *request, Queue
> > *lltask_queue)
> > +{
> > + THModel *th_model = NULL;
> > + LastLevelTaskItem *lltask;
> > + TaskItem *task = NULL;
> > + int ret = 0;
> > +
> > + if (ff_queue_size(lltask_queue) == 0) {
> > + destroy_request_item(&request);
> > + return 0;
> > + }
> > +
> > + lltask = (LastLevelTaskItem *)ff_queue_peek_front(lltask_queue);
> > + if (lltask == NULL) {
> > + av_log(NULL, AV_LOG_ERROR, "Failed to get
> > LastLevelTaskItem\n");
> > + ret = AVERROR(EINVAL);
> > + goto err;
> > + }
> > + task = lltask->task;
> > + th_model = (THModel *)task->model;
> > +
> > + ret = fill_model_input_th(th_model, request);
> > + if ( ret != 0) {
> > + goto err;
> > + }
> > + if (task->async) {
> > + avpriv_report_missing_feature(&th_model->ctx, "LibTorch
> > async");
> > + } else {
> > + ret = th_start_inference((void *)(request));
> > + if (ret != 0) {
> > + goto err;
> > + }
> > + infer_completion_callback(request);
> > + return (task->inference_done == task->inference_todo) ? 0 :
> > DNN_GENERIC_ERROR;
> > + }
> > +
> > +err:
> > + th_free_request(request->infer_request);
> > + if (ff_safe_queue_push_back(th_model->request_queue, request) < 0)
> > {
> > + destroy_request_item(&request);
> > + }
> > + return ret;
> > +}
> > +
> > +static int get_output_th(void *model, const char *input_name, int
> > input_width, int input_height,
> > + const char *output_name, int
> > *output_width, int *output_height)
> > +{
> > + int ret = 0;
> > + THModel *th_model = (THModel*) model;
> > + THContext *ctx = &th_model->ctx;
> > + TaskItem task = { 0 };
> > + THRequestItem *request = NULL;
> > + DNNExecBaseParams exec_params = {
> > + .input_name = input_name,
> > + .output_names = &output_name,
> > + .nb_output = 1,
> > + .in_frame = NULL,
> > + .out_frame = NULL,
> > + };
> > + ret = ff_dnn_fill_gettingoutput_task(&task, &exec_params,
> > th_model, input_height, input_width, ctx);
> > + if ( ret != 0) {
> > + goto err;
> > + }
> > +
> > + ret = extract_lltask_from_task(&task, th_model->lltask_queue);
> > + if ( ret != 0) {
> > + av_log(ctx, AV_LOG_ERROR, "unable to extract last level task
> > from task.\n");
> > + goto err;
> > + }
> > +
> > + request = (THRequestItem*)
> > ff_safe_queue_pop_front(th_model->request_queue);
> > + if (!request) {
> > + av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
> > + ret = AVERROR(EINVAL);
> > + goto err;
> > + }
> > +
> > + ret = execute_model_th(request, th_model->lltask_queue);
> > + *output_width = task.out_frame->width;
> > + *output_height = task.out_frame->height;
> > +
> > +err:
> > + av_frame_free(&task.out_frame);
> > + av_frame_free(&task.in_frame);
> > + return ret;
> > +}
> > +
> > +static THInferRequest *th_create_inference_request(void)
> > +{
> > + THInferRequest *request = (THInferRequest
> > *)av_malloc(sizeof(THInferRequest));
> > + if (!request) {
> > + return NULL;
> > + }
> > + request->input_tensor = NULL;
> > + request->output = NULL;
> > + return request;
> > +}
> > +
> > +static DNNModel *dnn_load_model_th(const char *model_filename,
> > DNNFunctionType func_type, const char *options, AVFilterContext
> > *filter_ctx)
> > +{
> > + DNNModel *model = NULL;
> > + THModel *th_model = NULL;
> > + THRequestItem *item = NULL;
> > + THContext *ctx;
> > +
> > + model = (DNNModel *)av_mallocz(sizeof(DNNModel));
> > + if (!model) {
> > + return NULL;
> > + }
> > +
> > + th_model = (THModel *)av_mallocz(sizeof(THModel));
> > + if (!th_model) {
> > + av_freep(&model);
> > + return NULL;
> > + }
> > + th_model->model = model;
> > + model->model = th_model;
> > + th_model->ctx.c_class = &dnn_th_class;
> > + ctx = &th_model->ctx;
> > + //parse options
> > + av_opt_set_defaults(ctx);
> > + if (av_opt_set_from_string(ctx, options, NULL, "=", "&") < 0) {
> > + av_log(ctx, AV_LOG_ERROR, "Failed to parse options \"%s\"\n",
> > options);
> > + return NULL;
> > + }
> > +
> > + c10::Device device = c10::Device(ctx->options.device_name);
> > + if (!device.is_cpu()) {
> > + av_log(ctx, AV_LOG_ERROR, "Not supported device:\"%s\"\n",
> > ctx->options.device_name);
> > + goto fail;
> > + }
> > +
> > + try {
> > + th_model->jit_model = new torch::jit::Module;
> > + (*th_model->jit_model) = torch::jit::load(model_filename);
> > + } catch (const c10::Error& e) {
> > + av_log(ctx, AV_LOG_ERROR, "Failed to load torch model\n");
> > + goto fail;
> > + }
> > +
> > + th_model->request_queue = ff_safe_queue_create();
> > + if (!th_model->request_queue) {
> > + goto fail;
> > + }
> > +
> > + item = (THRequestItem *)av_mallocz(sizeof(THRequestItem));
> > + if (!item) {
> > + goto fail;
> > + }
> > + item->lltask = NULL;
> > + item->infer_request = th_create_inference_request();
> > + if (!item->infer_request) {
> > + av_log(NULL, AV_LOG_ERROR, "Failed to allocate memory for
> > Torch inference request\n");
> > + goto fail;
> > + }
> > + item->exec_module.start_inference = &th_start_inference;
> > + item->exec_module.callback = &infer_completion_callback;
> > + item->exec_module.args = item;
> > +
> > + if (ff_safe_queue_push_back(th_model->request_queue, item) < 0) {
> > + goto fail;
> > + }
> > + item = NULL;
> > +
> > + th_model->task_queue = ff_queue_create();
> > + if (!th_model->task_queue) {
> > + goto fail;
> > + }
> > +
> > + th_model->lltask_queue = ff_queue_create();
> > + if (!th_model->lltask_queue) {
> > + goto fail;
> > + }
> > +
> > + model->get_input = &get_input_th;
> > + model->get_output = &get_output_th;
> > + model->options = NULL;
> > + model->filter_ctx = filter_ctx;
> > + model->func_type = func_type;
> > + return model;
> > +
> > +fail:
> > + if (item) {
> > + destroy_request_item(&item);
> > + av_freep(&item);
> > + }
> > + dnn_free_model_th(&model);
> > + return NULL;
> > +}
> > +
> > +static int dnn_execute_model_th(const DNNModel *model,
> > DNNExecBaseParams *exec_params)
> > +{
> > + THModel *th_model = (THModel *)model->model;
> > + THContext *ctx = &th_model->ctx;
> > + TaskItem *task;
> > + THRequestItem *request;
> > + int ret = 0;
> > +
> > + ret = ff_check_exec_params(ctx, DNN_TH, model->func_type,
> > exec_params);
> > + if (ret != 0) {
> > + av_log(ctx, AV_LOG_ERROR, "exec parameter checking fail.\n");
> > + return ret;
> > + }
> > +
> > + task = (TaskItem *)av_malloc(sizeof(TaskItem));
> > + if (!task) {
> > + av_log(ctx, AV_LOG_ERROR, "unable to alloc memory for task
> > item.\n");
> > + return AVERROR(ENOMEM);
> > + }
> > +
> > + ret = ff_dnn_fill_task(task, exec_params, th_model, 0, 1);
> > + if (ret != 0) {
> > + av_freep(&task);
> > + av_log(ctx, AV_LOG_ERROR, "unable to fill task.\n");
> > + return ret;
> > + }
> > +
> > + ret = ff_queue_push_back(th_model->task_queue, task);
> > + if (ret < 0) {
> > + av_freep(&task);
> > + av_log(ctx, AV_LOG_ERROR, "unable to push back task_queue.\n");
> > + return ret;
> > + }
> > +
> > + ret = extract_lltask_from_task(task, th_model->lltask_queue);
> > + if (ret != 0) {
> > + av_log(ctx, AV_LOG_ERROR, "unable to extract last level task
> > from task.\n");
> > + return ret;
> > + }
> > +
> > + request = (THRequestItem
> > *)ff_safe_queue_pop_front(th_model->request_queue);
> > + if (!request) {
> > + av_log(ctx, AV_LOG_ERROR, "unable to get infer request.\n");
> > + return AVERROR(EINVAL);
> > + }
> > +
> > + return execute_model_th(request, th_model->lltask_queue);
> > +}
> > +
> > +static DNNAsyncStatusType dnn_get_result_th(const DNNModel *model,
> > AVFrame **in, AVFrame **out)
> > +{
> > + THModel *th_model = (THModel *)model->model;
> > + return ff_dnn_get_result_common(th_model->task_queue, in, out);
> > +}
> > +
> > +static int dnn_flush_th(const DNNModel *model)
> > +{
> > + THModel *th_model = (THModel *)model->model;
> > + THRequestItem *request;
> > +
> > + if (ff_queue_size(th_model->lltask_queue) == 0)
> > + // no pending task need to flush
> > + return 0;
> > +
> > + request = (THRequestItem
> > *)ff_safe_queue_pop_front(th_model->request_queue);
> > + if (!request) {
> > + av_log(&th_model->ctx, AV_LOG_ERROR, "unable to get infer
> > request.\n");
> > + return AVERROR(EINVAL);
> > + }
> > +
> > + return execute_model_th(request, th_model->lltask_queue);
> > +}
> > +
> > +extern const DNNModule ff_dnn_backend_torch = {
> > + .load_model = dnn_load_model_th,
> > + .execute_model = dnn_execute_model_th,
> > + .get_result = dnn_get_result_th,
> > + .flush = dnn_flush_th,
> > + .free_model = dnn_free_model_th,
> > +};
> > diff --git a/libavfilter/dnn/dnn_interface.c
> > b/libavfilter/dnn/dnn_interface.c
> > index e843826aa6..b9f71aea53 100644
> > --- a/libavfilter/dnn/dnn_interface.c
> > +++ b/libavfilter/dnn/dnn_interface.c
> > @@ -28,6 +28,7 @@
> >
> > extern const DNNModule ff_dnn_backend_openvino;
> > extern const DNNModule ff_dnn_backend_tf;
> > +extern const DNNModule ff_dnn_backend_torch;
> >
> > const DNNModule *ff_get_dnn_module(DNNBackendType backend_type,
> void
> > *log_ctx)
> > {
> > @@ -40,6 +41,10 @@ const DNNModule
> *ff_get_dnn_module(DNNBackendType
> > backend_type, void *log_ctx)
> > case DNN_OV:
> > return &ff_dnn_backend_openvino;
> > #endif
> > + #if (CONFIG_LIBTORCH == 1)
> > + case DNN_TH:
> > + return &ff_dnn_backend_torch;
> > + #endif
> > default:
> > av_log(log_ctx, AV_LOG_ERROR,
> > "Module backend_type %d is not supported or
> > enabled.\n",
> > diff --git a/libavfilter/dnn_filter_common.c
> > b/libavfilter/dnn_filter_common.c
> > index f012d450a2..7d194c9ade 100644
> > --- a/libavfilter/dnn_filter_common.c
> > +++ b/libavfilter/dnn_filter_common.c
> > @@ -53,12 +53,22 @@ static char **separate_output_names(const char
> > *expr, const char *val_sep, int *
> >
> > int ff_dnn_init(DnnContext *ctx, DNNFunctionType func_type,
> > AVFilterContext *filter_ctx)
> > {
> > + DNNBackendType backend = ctx->backend_type;
> > +
> > if (!ctx->model_filename) {
> > av_log(filter_ctx, AV_LOG_ERROR, "model file for network is
> > not specified\n");
> > return AVERROR(EINVAL);
> > }
> >
> > - if (ctx->backend_type == DNN_TF) {
> > + if (backend == DNN_TH) {
> > + if (ctx->model_inputname)
> > + av_log(filter_ctx, AV_LOG_WARNING, "LibTorch backend do
> > not require inputname, "\
> > + "inputname will be
> > ignored.\n");
> > + if (ctx->model_outputnames)
> > + av_log(filter_ctx, AV_LOG_WARNING, "LibTorch backend do
> > not require outputname(s), "\
> > + "all outputname(s) will
> > be ignored.\n");
> > + ctx->nb_outputs = 1;
> > + } else if (backend == DNN_TF) {
> > if (!ctx->model_inputname) {
> > av_log(filter_ctx, AV_LOG_ERROR, "input name of the model
> > network is not specified\n");
> > return AVERROR(EINVAL);
> > @@ -115,7 +125,8 @@ int ff_dnn_get_input(DnnContext *ctx, DNNData
> > *input)
> >
> > int ff_dnn_get_output(DnnContext *ctx, int input_width, int
> > input_height, int *output_width, int *output_height)
> > {
> > - char * output_name = ctx->model_outputnames ?
> > ctx->model_outputnames[0] : NULL;
> > + char * output_name = ctx->model_outputnames && ctx->backend_type
> > != DNN_TH ?
> > + ctx->model_outputnames[0] : NULL;
> > return ctx->model->get_output(ctx->model->model,
> > ctx->model_inputname, input_width, input_height,
> > (const char *)output_name,
> > output_width, output_height);
> > }
> > diff --git a/libavfilter/dnn_interface.h b/libavfilter/dnn_interface.h
> > index 852d88baa8..63f492e690 100644
> > --- a/libavfilter/dnn_interface.h
> > +++ b/libavfilter/dnn_interface.h
> > @@ -32,7 +32,7 @@
> >
> > #define DNN_GENERIC_ERROR FFERRTAG('D','N','N','!')
> >
> > -typedef enum {DNN_TF = 1, DNN_OV} DNNBackendType;
> > +typedef enum {DNN_TF = 1, DNN_OV, DNN_TH} DNNBackendType;
> >
> > typedef enum {DNN_FLOAT = 1, DNN_UINT8 = 4} DNNDataType;
> >
> > diff --git a/libavfilter/vf_dnn_processing.c
> > b/libavfilter/vf_dnn_processing.c
> > index e7d21eef32..fdac31665e 100644
> > --- a/libavfilter/vf_dnn_processing.c
> > +++ b/libavfilter/vf_dnn_processing.c
> > @@ -50,6 +50,9 @@ static const AVOption dnn_processing_options[] = {
> > #endif
> > #if (CONFIG_LIBOPENVINO == 1)
> > { "openvino", "openvino backend flag", 0,
> > AV_OPT_TYPE_CONST, { .i64 = DNN_OV }, 0, 0, FLAGS, .unit =
> > "backend" },
> > +#endif
> > +#if (CONFIG_LIBTORCH == 1)
> > + { "torch", "torch backend flag", 0,
> > AV_OPT_TYPE_CONST, { .i64 = DNN_TH }, 0, 0, FLAGS,
> > "backend" },
> > #endif
> > DNN_COMMON_OPTIONS
> > { NULL }
> > --
> > 2.34.1
> >
> > _______________________________________________
> > ffmpeg-devel mailing list
> > ffmpeg-devel@ffmpeg.org
> > https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
> >
> > To unsubscribe, visit link above, or email
> > ffmpeg-devel-request@ffmpeg.org with subject "unsubscribe".
>
> --
> Jean-Baptiste Kempf - President
> +33 672 704 734
> _______________________________________________
> ffmpeg-devel mailing list
> ffmpeg-devel@ffmpeg.org
> https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
>
> To unsubscribe, visit link above, or email
> ffmpeg-devel-request@ffmpeg.org with subject "unsubscribe".
_______________________________________________
ffmpeg-devel mailing list
ffmpeg-devel@ffmpeg.org
https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
To unsubscribe, visit link above, or email
ffmpeg-devel-request@ffmpeg.org with subject "unsubscribe".
^ permalink raw reply [flat|nested] 3+ messages in thread
end of thread, other threads:[~2024-02-21 3:08 UTC | newest]
Thread overview: 3+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2024-02-20 4:48 [FFmpeg-devel] [PATCH v3] libavfi/dnn: add LibTorch as one of DNN backend wenbin.chen-at-intel.com
2024-02-21 1:44 ` Jean-Baptiste Kempf
2024-02-21 3:08 ` Chen, Wenbin
Git Inbox Mirror of the ffmpeg-devel mailing list - see https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
This inbox may be cloned and mirrored by anyone:
git clone --mirror https://master.gitmailbox.com/ffmpegdev/0 ffmpegdev/git/0.git
# If you have public-inbox 1.1+ installed, you may
# initialize and index your mirror using the following commands:
public-inbox-init -V2 ffmpegdev ffmpegdev/ https://master.gitmailbox.com/ffmpegdev \
ffmpegdev@gitmailbox.com
public-inbox-index ffmpegdev
Example config snippet for mirrors.
AGPL code for this site: git clone https://public-inbox.org/public-inbox.git