From: "Chen, Wenbin" <wenbin.chen-at-intel.com@ffmpeg.org>
To: FFmpeg development discussions and patches <ffmpeg-devel@ffmpeg.org>
Subject: Re: [FFmpeg-devel] [PATCH v5] libavfi/dnn: add LibTorch as one of DNN backend
Date: Fri, 15 Mar 2024 02:01:40 +0000
Message-ID: <IA1PR11MB63963B0FF95BA4C7ED12A6C7F8282@IA1PR11MB6396.namprd11.prod.outlook.com> (raw)
In-Reply-To: <PH7PR11MB5957E0938528E4BE5549B19CF1292@PH7PR11MB5957.namprd11.prod.outlook.com>
> > -----Original Message-----
> > From: ffmpeg-devel <ffmpeg-devel-bounces@ffmpeg.org> On Behalf Of
> > wenbin.chen-at-intel.com@ffmpeg.org
> > Sent: Monday, March 11, 2024 1:02 PM
> > To: ffmpeg-devel@ffmpeg.org
> > Subject: [FFmpeg-devel] [PATCH v5] libavfi/dnn: add LibTorch as one of DNN
> > backend
> >
> > From: Wenbin Chen <wenbin.chen@intel.com>
> >
> > PyTorch is an open source machine learning framework that accelerates
> > the path from research prototyping to production deployment. Official
> > website: https://pytorch.org/. We call the C++ library of PyTorch as
> > LibTorch, the same below.
> >
> > To build FFmpeg with LibTorch, please take following steps as reference:
> > 1. download LibTorch C++ library in https://pytorch.org/get-started/locally/,
> > please select C++/Java for language, and other options as your need.
> > Please download cxx11 ABI version (libtorch-cxx11-abi-shared-with-deps-
> > *.zip).
> > 2. unzip the file to your own dir, with command
> > unzip libtorch-shared-with-deps-latest.zip -d your_dir
> > 3. export libtorch_root/libtorch/include and
> > libtorch_root/libtorch/include/torch/csrc/api/include to $PATH
> > export libtorch_root/libtorch/lib/ to $LD_LIBRARY_PATH
> > 4. config FFmpeg with ../configure --enable-libtorch --extra-cflag=-
> > I/libtorch_root/libtorch/include --extra-cflag=-
> > I/libtorch_root/libtorch/include/torch/csrc/api/include --extra-ldflags=-
> > L/libtorch_root/libtorch/lib/
> > 5. make
> >
> > To run FFmpeg DNN inference with LibTorch backend:
> > ./ffmpeg -i input.jpg -vf
> > dnn_processing=dnn_backend=torch:model=LibTorch_model.pt -y
> output.jpg
> > The LibTorch_model.pt can be generated by Python with torch.jit.script()
> api.
> > Please note, torch.jit.trace() is not recommanded, since it does not support
> > ambiguous input size.
>
> Can you provide more detail (maybe a link from pytorch) about the
> libtorch_model.py generation and so we can have a try.
>
This is a guide from pytorch:
https://pytorch.org/tutorials/advanced/cpp_export.html
I will add it into commit log.
I didn't find a ready-made torchscript model to download. I'm afraid you'll have to export
the model yourself to test.
> >
> > Signed-off-by: Ting Fu <ting.fu@intel.com>
> > Signed-off-by: Wenbin Chen <wenbin.chen@intel.com>
> > ---
> > configure | 5 +-
> > libavfilter/dnn/Makefile | 1 +
> > libavfilter/dnn/dnn_backend_torch.cpp | 597
> > ++++++++++++++++++++++++++
> > libavfilter/dnn/dnn_interface.c | 5 +
> > libavfilter/dnn_filter_common.c | 15 +-
> > libavfilter/dnn_interface.h | 2 +-
> > libavfilter/vf_dnn_processing.c | 3 +
> > 7 files changed, 624 insertions(+), 4 deletions(-)
> > create mode 100644 libavfilter/dnn/dnn_backend_torch.cpp
> >
> > +static int fill_model_input_th(THModel *th_model, THRequestItem
> *request)
> > +{
> > + LastLevelTaskItem *lltask = NULL;
> > + TaskItem *task = NULL;
> > + THInferRequest *infer_request = NULL;
> > + DNNData input = { 0 };
> > + THContext *ctx = &th_model->ctx;
> > + int ret, width_idx, height_idx, channel_idx;
> > +
> > + lltask = (LastLevelTaskItem *)ff_queue_pop_front(th_model-
> > >lltask_queue);
> > + if (!lltask) {
> > + ret = AVERROR(EINVAL);
> > + goto err;
> > + }
> > + request->lltask = lltask;
> > + task = lltask->task;
> > + infer_request = request->infer_request;
> > +
> > + ret = get_input_th(th_model, &input, NULL);
> > + if ( ret != 0) {
> > + goto err;
> > + }
> > + width_idx = dnn_get_width_idx_by_layout(input.layout);
> > + height_idx = dnn_get_height_idx_by_layout(input.layout);
> > + channel_idx = dnn_get_channel_idx_by_layout(input.layout);
> > + input.dims[height_idx] = task->in_frame->height;
> > + input.dims[width_idx] = task->in_frame->width;
> > + input.data = av_malloc(input.dims[height_idx] * input.dims[width_idx] *
> > + input.dims[channel_idx] * sizeof(float));
> > + if (!input.data)
> > + return AVERROR(ENOMEM);
> > + infer_request->input_tensor = new torch::Tensor();
> > + infer_request->output = new torch::Tensor();
> > +
> > + switch (th_model->model->func_type) {
> > + case DFT_PROCESS_FRAME:
> > + input.scale = 255;
> > + if (task->do_ioproc) {
> > + if (th_model->model->frame_pre_proc != NULL) {
> > + th_model->model->frame_pre_proc(task->in_frame, &input,
> > th_model->model->filter_ctx);
> > + } else {
> > + ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx);
> > + }
> > + }
> > + break;
> > + default:
> > + avpriv_report_missing_feature(NULL, "model function type %d",
> > th_model->model->func_type);
> > + break;
> > + }
> > + *infer_request->input_tensor = torch::from_blob(input.data,
> > + {1, 1, input.dims[channel_idx], input.dims[height_idx],
> > input.dims[width_idx]},
>
> An extra dimension is added to support multiple frames for algorithms
> such as VideoSuperResolution, besides batch size, channel, height and width.
>
> Let's first support the regular dimension for NCHW/NHWC, and then
> add support for multiple frames.
OK, I will update it in patch version 6, and submit another patchset to support
multiple frame input.
Thanks for the review.
Wenbin
>
> _______________________________________________
> ffmpeg-devel mailing list
> ffmpeg-devel@ffmpeg.org
> https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
>
> To unsubscribe, visit link above, or email
> ffmpeg-devel-request@ffmpeg.org with subject "unsubscribe".
_______________________________________________
ffmpeg-devel mailing list
ffmpeg-devel@ffmpeg.org
https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
To unsubscribe, visit link above, or email
ffmpeg-devel-request@ffmpeg.org with subject "unsubscribe".
prev parent reply other threads:[~2024-03-15 2:01 UTC|newest]
Thread overview: 3+ messages / expand[flat|nested] mbox.gz Atom feed top
2024-03-11 5:02 wenbin.chen-at-intel.com
2024-03-14 11:38 ` Guo, Yejun
2024-03-15 2:01 ` Chen, Wenbin [this message]
Reply instructions:
You may reply publicly to this message via plain-text email
using any one of the following methods:
* Save the following mbox file, import it into your mail client,
and reply-to-all from there: mbox
Avoid top-posting and favor interleaved quoting:
https://en.wikipedia.org/wiki/Posting_style#Interleaved_style
* Reply using the --to, --cc, and --in-reply-to
switches of git-send-email(1):
git send-email \
--in-reply-to=IA1PR11MB63963B0FF95BA4C7ED12A6C7F8282@IA1PR11MB6396.namprd11.prod.outlook.com \
--to=wenbin.chen-at-intel.com@ffmpeg.org \
--cc=ffmpeg-devel@ffmpeg.org \
/path/to/YOUR_REPLY
https://kernel.org/pub/software/scm/git/docs/git-send-email.html
* If your mail client supports setting the In-Reply-To header
via mailto: links, try the mailto: link
Git Inbox Mirror of the ffmpeg-devel mailing list - see https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
This inbox may be cloned and mirrored by anyone:
git clone --mirror https://master.gitmailbox.com/ffmpegdev/0 ffmpegdev/git/0.git
# If you have public-inbox 1.1+ installed, you may
# initialize and index your mirror using the following commands:
public-inbox-init -V2 ffmpegdev ffmpegdev/ https://master.gitmailbox.com/ffmpegdev \
ffmpegdev@gitmailbox.com
public-inbox-index ffmpegdev
Example config snippet for mirrors.
AGPL code for this site: git clone https://public-inbox.org/public-inbox.git