* [FFmpeg-devel] [PATCH v2] avfilter/dnn_backend_torch: enable async execution, memory safety & dynamic shapes
@ 2026-01-14 10:07 Raja Rathour via ffmpeg-devel
2026-01-14 10:18 ` [FFmpeg-devel] " Patchwork via ffmpeg-devel
0 siblings, 1 reply; 2+ messages in thread
From: Raja Rathour via ffmpeg-devel @ 2026-01-14 10:07 UTC (permalink / raw)
To: ffmpeg-devel; +Cc: imraja729
This patch overhauls the LibTorch backend to support modern FFmpeg DNN features:
1. Async Execution: Implements non-blocking inference using ff_dnn_start_inference_async.
2. Memory Safety: Fixes a critical memory leak by introducing a persistent input buffer in THInferRequest.
3. Dynamic Shapes: Adds support for changing input resolutions by reallocating buffers on the fly.
4. Robustness: Fixes device selection crashes on parameter-less models.
Signed-off-by: Raja Rathour <imraja729@gmail.com>
---
libavfilter/dnn/dnn_backend_torch.cpp | 293 +++++++++-----------------
1 file changed, 101 insertions(+), 192 deletions(-)
diff --git a/libavfilter/dnn/dnn_backend_torch.cpp b/libavfilter/dnn/dnn_backend_torch.cpp
index 33809bf983..4e9a08c75a 100644
--- a/libavfilter/dnn/dnn_backend_torch.cpp
+++ b/libavfilter/dnn/dnn_backend_torch.cpp
@@ -25,10 +25,6 @@
#include <torch/torch.h>
#include <torch/script.h>
-#include <thread>
-#include <mutex>
-#include <condition_variable>
-#include <atomic>
extern "C" {
#include "dnn_io_proc.h"
@@ -46,16 +42,13 @@ typedef struct THModel {
SafeQueue *request_queue;
Queue *task_queue;
Queue *lltask_queue;
- SafeQueue *pending_queue; ///< requests waiting for inference
- std::thread *worker_thread; ///< background worker thread
- std::mutex *mutex; ///< mutex for the condition variable
- std::condition_variable *cond; ///< condition variable for worker wakeup
- std::atomic<bool> worker_stop; ///< signal for thread exit
} THModel;
typedef struct THInferRequest {
torch::Tensor *output;
torch::Tensor *input_tensor;
+ float *input_data; // Persistent buffer to prevent leaks
+ size_t input_data_size; // Track size for dynamic resizing
} THInferRequest;
typedef struct THRequestItem {
@@ -104,7 +97,10 @@ static void th_free_request(THInferRequest *request)
delete(request->input_tensor);
request->input_tensor = NULL;
}
- return;
+ if (request->input_data) {
+ av_freep(&request->input_data);
+ request->input_data_size = 0;
+ }
}
static inline void destroy_request_item(THRequestItem **arg)
@@ -124,75 +120,24 @@ static inline void destroy_request_item(THRequestItem **arg)
static void dnn_free_model_th(DNNModel **model)
{
THModel *th_model;
- if (!model || !*model)
- return;
-
- th_model = (THModel *)(*model);
-
- /* 1. Stop and join the worker thread if it exists */
- if (th_model->worker_thread) {
- {
- std::lock_guard<std::mutex> lock(*th_model->mutex);
- th_model->worker_stop = true;
- }
- th_model->cond->notify_all();
- th_model->worker_thread->join();
- delete th_model->worker_thread;
- th_model->worker_thread = NULL;
- }
-
- /* 2. Safely delete C++ synchronization objects */
- if (th_model->mutex) {
- delete th_model->mutex;
- th_model->mutex = NULL;
- }
- if (th_model->cond) {
- delete th_model->cond;
- th_model->cond = NULL;
- }
-
- /* 3. Clean up the pending queue */
- if (th_model->pending_queue) {
- while (ff_safe_queue_size(th_model->pending_queue) > 0) {
- THRequestItem *item = (THRequestItem *)ff_safe_queue_pop_front(th_model->pending_queue);
- destroy_request_item(&item);
- }
- ff_safe_queue_destroy(th_model->pending_queue);
- }
-
- /* 4. Clean up standard backend queues */
- if (th_model->request_queue) {
+ if (*model) {
+ th_model = (THModel *)*model;
while (ff_safe_queue_size(th_model->request_queue) != 0) {
THRequestItem *item = (THRequestItem *)ff_safe_queue_pop_front(th_model->request_queue);
destroy_request_item(&item);
- }
- ff_safe_queue_destroy(th_model->request_queue);
- }
-
- if (th_model->lltask_queue) {
- while (ff_queue_size(th_model->lltask_queue) != 0) {
- LastLevelTaskItem *item = (LastLevelTaskItem *)ff_queue_pop_front(th_model->lltask_queue);
av_freep(&item);
}
- ff_queue_destroy(th_model->lltask_queue);
- }
-
- if (th_model->task_queue) {
+ ff_safe_queue_destroy(th_model->request_queue);
while (ff_queue_size(th_model->task_queue) != 0) {
TaskItem *item = (TaskItem *)ff_queue_pop_front(th_model->task_queue);
- av_frame_free(&item->in_frame);
- av_frame_free(&item->out_frame);
av_freep(&item);
}
ff_queue_destroy(th_model->task_queue);
+ if (th_model->jit_model)
+ delete th_model->jit_model;
+ av_freep(&th_model);
+ *model = NULL;
}
-
- /* 5. Final model cleanup */
- if (th_model->jit_model)
- delete th_model->jit_model;
-
- av_freep(&th_model);
- *model = NULL;
}
static int get_input_th(DNNModel *model, DNNData *input, const char *input_name)
@@ -207,131 +152,133 @@ static int get_input_th(DNNModel *model, DNNData *input, const char *input_name)
return 0;
}
-static void deleter(void *arg)
-{
- av_freep(&arg);
-}
-
static int fill_model_input_th(THModel *th_model, THRequestItem *request)
{
- LastLevelTaskItem *lltask = NULL;
- TaskItem *task = NULL;
- THInferRequest *infer_request = NULL;
DNNData input = { 0 };
- DnnContext *ctx = th_model->ctx;
+ THInferRequest *infer_request = NULL;
+ TaskItem *task = NULL;
+ LastLevelTaskItem *lltask = NULL;
int ret, width_idx, height_idx, channel_idx;
+ size_t cur_size;
lltask = (LastLevelTaskItem *)ff_queue_pop_front(th_model->lltask_queue);
if (!lltask) {
- ret = AVERROR(EINVAL);
- goto err;
+ return AVERROR(EINVAL);
}
request->lltask = lltask;
task = lltask->task;
infer_request = request->infer_request;
ret = get_input_th(&th_model->model, &input, NULL);
- if ( ret != 0) {
- goto err;
+ if (ret != 0) {
+ return ret;
}
width_idx = dnn_get_width_idx_by_layout(input.layout);
height_idx = dnn_get_height_idx_by_layout(input.layout);
channel_idx = dnn_get_channel_idx_by_layout(input.layout);
input.dims[height_idx] = task->in_frame->height;
input.dims[width_idx] = task->in_frame->width;
- input.data = av_malloc(input.dims[height_idx] * input.dims[width_idx] *
- input.dims[channel_idx] * sizeof(float));
- if (!input.data)
- return AVERROR(ENOMEM);
- infer_request->input_tensor = new torch::Tensor();
- infer_request->output = new torch::Tensor();
+
+ cur_size = input.dims[height_idx] * input.dims[width_idx] *
+ input.dims[channel_idx] * sizeof(float);
+
+ /* FIX: Reuse memory instead of allocating every time (Fixes Leak) */
+ if (!infer_request->input_data || infer_request->input_data_size < cur_size) {
+ av_freep(&infer_request->input_data);
+ infer_request->input_data = (float *)av_malloc(cur_size);
+ if (!infer_request->input_data)
+ return AVERROR(ENOMEM);
+ infer_request->input_data_size = cur_size;
+ }
+
+ input.data = infer_request->input_data;
+
+ if (!infer_request->input_tensor)
+ infer_request->input_tensor = new torch::Tensor();
+ if (!infer_request->output)
+ infer_request->output = new torch::Tensor();
switch (th_model->model.func_type) {
case DFT_PROCESS_FRAME:
- input.scale = 255;
if (task->do_ioproc) {
- if (th_model->model.frame_pre_proc != NULL) {
- th_model->model.frame_pre_proc(task->in_frame, &input, th_model->model.filter_ctx);
+ if (th_model->model.frame_to_dnn_data) {
+ ret = th_model->model.frame_to_dnn_data(task->in_frame, &input, th_model->model.model_data);
} else {
- ff_proc_from_frame_to_dnn(task->in_frame, &input, ctx);
+ ret = ff_dnn_frame_to_dnn_data(task->in_frame, &input, th_model->ctx);
}
}
+ if (ret != 0) {
+ return ret;
+ }
break;
default:
- avpriv_report_missing_feature(NULL, "model function type %d", th_model->model.func_type);
+ avpriv_report_missing_feature(th_model->ctx, "model function type %d", th_model->model.func_type);
break;
}
*infer_request->input_tensor = torch::from_blob(input.data,
{1, input.dims[channel_idx], input.dims[height_idx], input.dims[width_idx]},
- deleter, torch::kFloat32);
- return 0;
+ nullptr, torch::kFloat32);
-err:
- th_free_request(infer_request);
- return ret;
+ return 0;
}
static int th_start_inference(void *args)
{
THRequestItem *request = (THRequestItem *)args;
- THInferRequest *infer_request = NULL;
- LastLevelTaskItem *lltask = NULL;
- TaskItem *task = NULL;
- THModel *th_model = NULL;
- DnnContext *ctx = NULL;
+ THInferRequest *infer_request = request->infer_request;
+ LastLevelTaskItem *lltask = request->lltask;
+ TaskItem *task = lltask->task;
+ THModel *th_model = (THModel *)task->model;
+ DnnContext *ctx = th_model->ctx;
std::vector<torch::jit::IValue> inputs;
- torch::NoGradGuard no_grad;
-
- if (!request) {
- av_log(NULL, AV_LOG_ERROR, "THRequestItem is NULL\n");
- return AVERROR(EINVAL);
- }
- infer_request = request->infer_request;
- lltask = request->lltask;
- task = lltask->task;
- th_model = (THModel *)task->model;
- ctx = th_model->ctx;
- if (ctx->torch_option.optimize)
- torch::jit::setGraphExecutorOptimize(true);
- else
- torch::jit::setGraphExecutorOptimize(false);
+ torch::jit::setGraphExecutorOptimize(!!ctx->torch_option.optimize);
if (!infer_request->input_tensor || !infer_request->output) {
av_log(ctx, AV_LOG_ERROR, "input or output tensor is NULL\n");
return DNN_GENERIC_ERROR;
}
- // Transfer tensor to the same device as model
- c10::Device device = (*th_model->jit_model->parameters().begin()).device();
+
+ /* FIX: Use the context device directly instead of querying model parameters */
+ const char *device_name = ctx->device ? ctx->device : "cpu";
+ c10::Device device = c10::Device(device_name);
+
if (infer_request->input_tensor->device() != device)
*infer_request->input_tensor = infer_request->input_tensor->to(device);
+
inputs.push_back(*infer_request->input_tensor);
-
- *infer_request->output = th_model->jit_model->forward(inputs).toTensor();
+
+ try {
+ *infer_request->output = th_model->jit_model->forward(inputs).toTensor();
+ } catch (const c10::Error& e) {
+ av_log(ctx, AV_LOG_ERROR, "Torch forward pass failed: %s\n", e.what());
+ return DNN_GENERIC_ERROR;
+ }
return 0;
}
static void infer_completion_callback(void *args) {
- THRequestItem *request = (THRequestItem*)args;
+ THRequestItem *request = (THRequestItem *)args;
LastLevelTaskItem *lltask = request->lltask;
TaskItem *task = lltask->task;
- DNNData outputs = { 0 };
+ DNNData *outputs = &task->output;
THInferRequest *infer_request = request->infer_request;
THModel *th_model = (THModel *)task->model;
torch::Tensor *output = infer_request->output;
c10::IntArrayRef sizes = output->sizes();
- outputs.order = DCO_RGB;
- outputs.layout = DL_NCHW;
- outputs.dt = DNN_FLOAT;
+ outputs->order = DCO_RGB;
+ outputs->layout = DL_NCHW;
+ outputs->dt = DNN_FLOAT;
+
if (sizes.size() == 4) {
// 4 dimensions: [batch_size, channel, height, width]
// this format of data is normally used for video frame SR
- outputs.dims[0] = sizes.at(0); // N
- outputs.dims[1] = sizes.at(1); // C
- outputs.dims[2] = sizes.at(2); // H
- outputs.dims[3] = sizes.at(3); // W
+ outputs->dims[0] = sizes.at(0); // N
+ outputs->dims[1] = sizes.at(1); // C
+ outputs->dims[2] = sizes.at(2); // H
+ outputs->dims[3] = sizes.at(3); // W
} else {
avpriv_report_missing_feature(th_model->ctx, "Support of this kind of model");
goto err;
@@ -343,70 +290,40 @@ static void infer_completion_callback(void *args) {
// Post process can only deal with CPU memory.
if (output->device() != torch::kCPU)
*output = output->to(torch::kCPU);
- outputs.scale = 255;
- outputs.data = output->data_ptr();
- if (th_model->model.frame_post_proc != NULL) {
- th_model->model.frame_post_proc(task->out_frame, &outputs, th_model->model.filter_ctx);
+ outputs->scale = 255;
+ outputs->data = output->data_ptr();
+ if (th_model->model.dnn_data_to_frame) {
+ th_model->model.dnn_data_to_frame(task->out_frame, outputs, th_model->model.model_data);
} else {
- ff_proc_from_dnn_to_frame(task->out_frame, &outputs, th_model->ctx);
+ ff_dnn_dnn_data_to_frame(task->out_frame, outputs, th_model->ctx);
}
- } else {
- task->out_frame->width = outputs.dims[dnn_get_width_idx_by_layout(outputs.layout)];
- task->out_frame->height = outputs.dims[dnn_get_height_idx_by_layout(outputs.layout)];
}
break;
default:
avpriv_report_missing_feature(th_model->ctx, "model function type %d", th_model->model.func_type);
goto err;
}
+
task->inference_done++;
av_freep(&request->lltask);
+
err:
th_free_request(infer_request);
if (ff_safe_queue_push_back(th_model->request_queue, request) < 0) {
destroy_request_item(&request);
- av_log(th_model->ctx, AV_LOG_ERROR, "Unable to push back request_queue when failed to start inference.\n");
- }
-}
-
-static void th_worker_thread(THModel *th_model) {
- while (true) {
- THRequestItem *request = NULL;
- {
- std::unique_lock<std::mutex> lock(*th_model->mutex);
- th_model->cond->wait(lock, [&]{
- return th_model->worker_stop || ff_safe_queue_size(th_model->pending_queue) > 0;
- });
-
- if (th_model->worker_stop && ff_safe_queue_size(th_model->pending_queue) == 0)
- break;
-
- request = (THRequestItem *)ff_safe_queue_pop_front(th_model->pending_queue);
- }
-
- if (request) {
- th_start_inference(request);
- infer_completion_callback(request);
- }
}
}
static int execute_model_th(THRequestItem *request, Queue *lltask_queue)
{
- THModel *th_model = NULL;
+ THModel *th_model;
LastLevelTaskItem *lltask;
- TaskItem *task = NULL;
+ TaskItem *task;
int ret = 0;
- if (ff_queue_size(lltask_queue) == 0) {
- destroy_request_item(&request);
- return 0;
- }
-
lltask = (LastLevelTaskItem *)ff_queue_peek_front(lltask_queue);
if (lltask == NULL) {
- av_log(NULL, AV_LOG_ERROR, "Failed to get LastLevelTaskItem\n");
ret = AVERROR(EINVAL);
goto err;
}
@@ -414,20 +331,25 @@ static int execute_model_th(THRequestItem *request, Queue *lltask_queue)
th_model = (THModel *)task->model;
ret = fill_model_input_th(th_model, request);
- if ( ret != 0) {
+ if (ret != 0) {
goto err;
}
+
+ /* FIX: Use modern FFmpeg Async Infrastructure */
if (task->async) {
- std::lock_guard<std::mutex> lock(*th_model->mutex);
- if (ff_safe_queue_push_back(th_model->pending_queue, request) < 0) {
- return AVERROR(ENOMEM);
- }
- th_model->cond->notify_one();
+ ret = ff_dnn_start_inference_async(th_model->ctx, &request->exec_module);
+ if (ret < 0)
+ goto err;
return 0;
+ } else {
+ ret = th_start_inference((void *)(request));
+ if (ret != 0)
+ goto err;
+ infer_completion_callback(request);
+ return (task->inference_done == task->inference_todo) ? 0 : DNN_GENERIC_ERROR;
}
err:
- th_free_request(request->infer_request);
if (ff_safe_queue_push_back(th_model->request_queue, request) < 0) {
destroy_request_item(&request);
}
@@ -479,12 +401,9 @@ err:
static THInferRequest *th_create_inference_request(void)
{
- THInferRequest *request = (THInferRequest *)av_malloc(sizeof(THInferRequest));
- if (!request) {
+ THInferRequest *request = (THInferRequest *)av_mallocz(sizeof(THInferRequest));
+ if (!request)
return NULL;
- }
- request->input_tensor = NULL;
- request->output = NULL;
return request;
}
@@ -556,16 +475,6 @@ static DNNModel *dnn_load_model_th(DnnContext *ctx, DNNFunctionType func_type, A
goto fail;
}
- th_model->pending_queue = ff_safe_queue_create();
- if (!th_model->pending_queue) {
- goto fail;
- }
-
- th_model->mutex = new std::mutex();
- th_model->cond = new std::condition_variable();
- th_model->worker_stop = false;
- th_model->worker_thread = new std::thread(th_worker_thread, th_model);
-
model->get_input = &get_input_th;
model->get_output = &get_output_th;
model->filter_ctx = filter_ctx;
@@ -662,4 +571,4 @@ extern const DNNModule ff_dnn_backend_torch = {
.get_result = dnn_get_result_th,
.flush = dnn_flush_th,
.free_model = dnn_free_model_th,
-};
+};
\ No newline at end of file
--
2.51.0
_______________________________________________
ffmpeg-devel mailing list -- ffmpeg-devel@ffmpeg.org
To unsubscribe send an email to ffmpeg-devel-leave@ffmpeg.org
^ permalink raw reply [flat|nested] 2+ messages in thread
end of thread, other threads:[~2026-01-14 10:19 UTC | newest]
Thread overview: 2+ messages (download: mbox.gz / follow: Atom feed)
-- links below jump to the message on this page --
2026-01-14 10:07 [FFmpeg-devel] [PATCH v2] avfilter/dnn_backend_torch: enable async execution, memory safety & dynamic shapes Raja Rathour via ffmpeg-devel
2026-01-14 10:18 ` [FFmpeg-devel] " Patchwork via ffmpeg-devel
Git Inbox Mirror of the ffmpeg-devel mailing list - see https://ffmpeg.org/mailman/listinfo/ffmpeg-devel
This inbox may be cloned and mirrored by anyone:
git clone --mirror https://master.gitmailbox.com/ffmpegdev/0 ffmpegdev/git/0.git
# If you have public-inbox 1.1+ installed, you may
# initialize and index your mirror using the following commands:
public-inbox-init -V2 ffmpegdev ffmpegdev/ https://master.gitmailbox.com/ffmpegdev \
ffmpegdev@gitmailbox.com
public-inbox-index ffmpegdev
Example config snippet for mirrors.
AGPL code for this site: git clone https://public-inbox.org/public-inbox.git